Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peptide oligomers for holographic data storage

Abstract

SEVERAL classes of organic materials (such as photoanisotropic liquid-crystalline polymers1–4 and photorefractive polymers5–7) are being investigated for the development of media for optical data storage. Here we describe a new family of organic materials—peptide oligomers containing azobenzene chromophores— which appear particularly promising for erasable holographic data storage applications. The rationale for our approach is to use the structural properties of peptide-like molecules to impose orientational order on the chromophores, and thereby optimize the optical properties of the resulting materials. Here we show that holographic gratings with large first-order diffraction efficiencies (up to 80%) can be written and erased optically in oligomer films only a few micrometres thick. The holograms also exhibit good thermal stability, and are not erased after heating to 180 °C for one month. Straightforward extension of this peptide-based strategy to other molecular structures should allow the rational design of a wide range of organic materials with potentially useful optical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eich, M., Wendorff, J. H., Reck, B. & Ringsdorf, H. Makromol. Chem. Rapid Commun. 8, 59–63 (1987).

    Article  CAS  Google Scholar 

  2. Eich, M. & Wendorff, J. H. Makromol. Chem. Rapid Commun. 8, 467–471 (1987).

    Article  CAS  Google Scholar 

  3. Eich, M. & Wendorff, J. H. J. Opt. Soc. Am. B 7, 1428–1436 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Jones, C. & Day, S. Nature 351, 15 (1991).

    Article  ADS  Google Scholar 

  5. Ducharme, S., Scott, J. C., Twieg, R. J. & Moerner, W. E. Phys. Rev. Lett. 66, 1846–1849 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Meerholz, K., Volodin, B. L., Sandalphon, Kippelen, B. & Peyghambarian, N. Nature 371, 497–500 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Moerner, W. E. Nature 371, 475–477 (1994).

    Article  ADS  Google Scholar 

  8. Gibbons, W. M., Shannon, P. J., Sun, S.-T. & Swetlin, B. J. Nature 351, 49–50 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Science 254, 1497–1500 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Egholm, M., Buchardt, O., Nielsen, P. E. & Berg, R. H. J. Am. Chem. Soc. 114, 1895–1897 (1992).

    Article  CAS  Google Scholar 

  11. Egholm, M., Nielsen, P. E., Buchardt, O. & Berg, R. H. J. Am. Chem. Soc. 114, 9677–9678 (1992).

    Article  CAS  Google Scholar 

  12. Egholm, M. et al. Nature 365, 566–568 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Wiesner, U., Antonietti, M., Boeffel, C. & Spiess, H. W. Makromol. Chem. 191, 2133–2149 (1990).

    Article  CAS  Google Scholar 

  14. Wiesner, U., Reynolds, N., Boeffel, C. & Spiess, H. W. Liquid Cryst. 11, 251–267 (1992).

    Article  CAS  Google Scholar 

  15. Hvilsted, S., Andruzzi, F. & Ramanujam, P. S. Opt. Lett. 17, 1234–1236 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Hvilsted, S., Andruzzi, F., Kulinna, C., Siesler, H. W. & Ramanujam, P. S. Macromolecules 28, 2172–2183 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Merrifield, R. B. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  18. Merrifield, B. Science 232, 341–347 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Nikolova, L. & Todorov, T. Opt. Acta 31, 579–588 (1984).

    Article  ADS  Google Scholar 

  20. Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry Part II, Techniques for the Study of Biological Structure and Function (W. H. Freeman, New York, 1980).

    Google Scholar 

  21. Sincerbox, G. T. Opt. Mater. 4, 370–375 (1995).

    Article  ADS  Google Scholar 

  22. Berg, R. H. et al. J. Am. Chem. Soc. 111, 8024–8026 (1989).

    Article  CAS  Google Scholar 

  23. Bieringer, T., Wuttke, R., Haarer, D., Geßner, U. & Rübner, J. Macromol. Chem. Phys. 196, 1375–1390 (1995).

    Article  CAS  Google Scholar 

  24. Carpino, L. A. J. Am. Chem. Soc. 79, 4427–4431 (1957).

    Article  CAS  Google Scholar 

  25. Carpino, L. A. & Han, G. Y. J. Org. Chem. 37, 3404–3409 (1972).

    Article  CAS  Google Scholar 

  26. Pietta, P. G. & Marshall, G. R. J. Chem. Soc. D 650–651 (1970).

  27. Matsueda, G. R. & Stewart, J. M. Peptides 2, 45–50 (1981).

    Article  CAS  Google Scholar 

  28. Sarin, V. K., Kent, S. B. H., Tam, J. P. & Merrifield, R. B. Anal. Biochem. 117, 147–157 (1981).

    Article  CAS  Google Scholar 

  29. Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. Anal. Biochem. 34, 595–598 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, R., Hvilsted, S. & Ramanujam, P. Peptide oligomers for holographic data storage. Nature 383, 505–508 (1996). https://doi.org/10.1038/383505a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/383505a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing