Abstract
SEVERAL classes of organic materials (such as photoanisotropic liquid-crystalline polymers1–4 and photorefractive polymers5–7) are being investigated for the development of media for optical data storage. Here we describe a new family of organic materials—peptide oligomers containing azobenzene chromophores— which appear particularly promising for erasable holographic data storage applications. The rationale for our approach is to use the structural properties of peptide-like molecules to impose orientational order on the chromophores, and thereby optimize the optical properties of the resulting materials. Here we show that holographic gratings with large first-order diffraction efficiencies (up to 80%) can be written and erased optically in oligomer films only a few micrometres thick. The holograms also exhibit good thermal stability, and are not erased after heating to 180 °C for one month. Straightforward extension of this peptide-based strategy to other molecular structures should allow the rational design of a wide range of organic materials with potentially useful optical properties.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eich, M., Wendorff, J. H., Reck, B. & Ringsdorf, H. Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
Eich, M. & Wendorff, J. H. Makromol. Chem. Rapid Commun. 8, 467–471 (1987).
Eich, M. & Wendorff, J. H. J. Opt. Soc. Am. B 7, 1428–1436 (1990).
Jones, C. & Day, S. Nature 351, 15 (1991).
Ducharme, S., Scott, J. C., Twieg, R. J. & Moerner, W. E. Phys. Rev. Lett. 66, 1846–1849 (1991).
Meerholz, K., Volodin, B. L., Sandalphon, Kippelen, B. & Peyghambarian, N. Nature 371, 497–500 (1994).
Moerner, W. E. Nature 371, 475–477 (1994).
Gibbons, W. M., Shannon, P. J., Sun, S.-T. & Swetlin, B. J. Nature 351, 49–50 (1991).
Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Science 254, 1497–1500 (1991).
Egholm, M., Buchardt, O., Nielsen, P. E. & Berg, R. H. J. Am. Chem. Soc. 114, 1895–1897 (1992).
Egholm, M., Nielsen, P. E., Buchardt, O. & Berg, R. H. J. Am. Chem. Soc. 114, 9677–9678 (1992).
Egholm, M. et al. Nature 365, 566–568 (1993).
Wiesner, U., Antonietti, M., Boeffel, C. & Spiess, H. W. Makromol. Chem. 191, 2133–2149 (1990).
Wiesner, U., Reynolds, N., Boeffel, C. & Spiess, H. W. Liquid Cryst. 11, 251–267 (1992).
Hvilsted, S., Andruzzi, F. & Ramanujam, P. S. Opt. Lett. 17, 1234–1236 (1992).
Hvilsted, S., Andruzzi, F., Kulinna, C., Siesler, H. W. & Ramanujam, P. S. Macromolecules 28, 2172–2183 (1995).
Merrifield, R. B. J. Am. Chem. Soc. 85, 2149–2154 (1963).
Merrifield, B. Science 232, 341–347 (1986).
Nikolova, L. & Todorov, T. Opt. Acta 31, 579–588 (1984).
Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry Part II, Techniques for the Study of Biological Structure and Function (W. H. Freeman, New York, 1980).
Sincerbox, G. T. Opt. Mater. 4, 370–375 (1995).
Berg, R. H. et al. J. Am. Chem. Soc. 111, 8024–8026 (1989).
Bieringer, T., Wuttke, R., Haarer, D., Geßner, U. & Rübner, J. Macromol. Chem. Phys. 196, 1375–1390 (1995).
Carpino, L. A. J. Am. Chem. Soc. 79, 4427–4431 (1957).
Carpino, L. A. & Han, G. Y. J. Org. Chem. 37, 3404–3409 (1972).
Pietta, P. G. & Marshall, G. R. J. Chem. Soc. D 650–651 (1970).
Matsueda, G. R. & Stewart, J. M. Peptides 2, 45–50 (1981).
Sarin, V. K., Kent, S. B. H., Tam, J. P. & Merrifield, R. B. Anal. Biochem. 117, 147–157 (1981).
Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. Anal. Biochem. 34, 595–598 (1970).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Berg, R., Hvilsted, S. & Ramanujam, P. Peptide oligomers for holographic data storage. Nature 383, 505–508 (1996). https://doi.org/10.1038/383505a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/383505a0
This article is cited by
-
Two-photon-induced birefringence in azo-dye bearing polyimide; the birefringence changes versus the writing power
Applied Physics B (2011)
-
Rewritable holograms based on azobenzene-containing liquid-crystalline polymers
Polymer Journal (2010)
-
Study of cis–trans isomerization mechanism of 3,3′-azobenzene disulphonate in the lowest singlet and triplet electronic states by density functional theory
Structural Chemistry (2010)
-
Synthesis, characterization, and photochromic behaviors of polythiophene derivatives in the solid state
Journal of Materials Science (2009)
-
Optical gain by a simple photoisomerization process
Nature Materials (2008)


