Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD)
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 12 March 1999

Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD)

  • V H Fingar1,
  • P K Kik1,
  • P S Haydon1,
  • P B Cerrito2,
  • M Tseng3,
  • E Abang3 &
  • …
  • T J Wieman1 

British Journal of Cancer volume 79, pages 1702–1708 (1999)Cite this article

  • 2218 Accesses

  • 202 Citations

  • 6 Altmetric

  • Metrics details

This article has been updated

Summary

Benzoporphyrin derivative monoacid ring A (BPD-MA, verteporfin) is currently under investigation as a photosensitizer for photodynamic therapy (PDT). Since BPD exhibits rapid pharmacokinetics in plasma and tissues, we assessed damage to tumour and muscle microvasculature when light treatment for PDT was given at short times after injection of photosensitizer. Groups of rats with chondrosarcoma were given 2 mg kg-1 of BPD intravenously 5 min to 180 min before light treatment of 150 J cm-2 690 nm. Vascular response was monitored using intravital microscopy and tumour cure was monitored by following regrowth over 42 days. For treatment at 5 or 30 min after BPD injection, blood flow stasis was limited to tumour microvasculature with lesser response in the surrounding normal microvasculature, indicating selective targeting for damage. No acute changes were observed in vessels when light was given 180 min after BPD injection. Tumour regression after light treatment occurred in all animals given PDT with BPD. Long-term tumour regression was greater in animals treated 5 min after BPD injection and least in animals given treatment 180 min after drug injection. The correlation between the timing for vascular damage and cure implies that blood flow stasis plays a significant role in PDT-induced tumour destruction.

Similar content being viewed by others

Heterogeneous tumor blood oxygenation dynamics during phototherapy deciphered with real-time label-free photoacoustic imaging

Article Open access 04 June 2025

Real-world outcomes of combined therapy of photodynamic therapy with anti-vascular endothelial growth factor for polypoidal choroidal vasculopathy

Article Open access 28 September 2021

Engineering photodynamics for treatment, priming and imaging

Article 19 June 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Allison, B. A., Waterfield, E., Richter, A. M. & Levy, J. G. (1991). The effects of plasma lipoproteins on in vitro tumor cell killing and in vivo tumor photosensitization with benzoporphyrin derivative. Photochem Photobiol 54: 709–715.

    Article  CAS  Google Scholar 

  • Allison, B. A., Pritchard, P. H. & Levy, J. G. (1994). Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br J Cancer 69: 833–839.

    Article  CAS  Google Scholar 

  • Allison, B. A., Crespo, M. T., Jain, A. K., Richter, A. M., Hsiang, Y. N. & Levy, J. G. (1997). Delivery of benzoporphyrin derivative, a photosensitizer, into atherosclerotic plaque of watanabe heritable hyperlipidemic rabbits and balloon-injured New Zealand rabbits. Photochem Photobiol 65: 877–883.

    Article  CAS  Google Scholar 

  • Chowdary, R. K., Ratkay, L. G., Neyndorff, C., Richter, A. M., Obochi, M., Waterfield, J. & Levy, J. G. (1994). The use of transcutaneous photodynamic therapy in the prevention of adjuvant-enhanced arthritis in MRL/lpr mice. Clin Immunol Immunopathol 72: 255–263.

    Article  Google Scholar 

  • Fielding, P. E., Vlodevsky, I., Gospodarowicz, D. & Fielding, C. J. (1979). Effect of contact inhibition on the regulation of cholesterol metabolism in cultured vascular endothelial cells. J Biol Chem 254: 749–755.

    CAS  PubMed  Google Scholar 

  • Fingar, V. H. & Henderson, B. W. (1987). Drug and light dose dependence of photodynamic therapy: a study of tumor and normal tissue response. Photochem Photobiol 46: 837–841.

    Article  CAS  Google Scholar 

  • Fingar, V. H., Wieman, T. J. & Doak, K. W. (1990). The role of thromboxane and prostacyclin release on photodynamic therapy-induced tumor destruction. Cancer Res 50: 2599–2603.

    CAS  Google Scholar 

  • Fingar, V. H., Wieman, T. J., Wiehle, S. A. & Cerrito, P. B. (1992). The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability and leukocyte adhesion. Cancer Res 52: 4914–4921.

    CAS  Google Scholar 

  • Haimovici, R., Kramer, M., Miller, J. W., Hasan, T., Flotte, T. J., Schomacker, K. T. & Gragoudas, E. S. (1997). Localization of lipoprotein-delivered benzoporphyrin derivative in the rabbit eye. Current Eye Res 16: 83–90.

    Article  CAS  Google Scholar 

  • Henderson, B. W. & Dougherty, T. J. (1992). How does photodynamic therapy work?. Photochem Photobiol 55: 145–157.

    Article  CAS  Google Scholar 

  • Henderson, B. W. & Farrell, G. (1989). Possible implications of vascular damage for tumor cell inactivation in vivo: comparison of different photosensitizers. In SPIE Proceedings 1065 Photodynamic Therapy: Mechanisms. Dougherty TJ (ed), pp. 2–10. The International Society for Optical Engineering, Bellingham, Washington, USA

  • Korbelik, M. & Krosl, G. (1995). Accumulation of benzoporphyrin derivative in malignant and host cell populations of the murine RIF tumor. Cancer Lett 97: 249–254.

    Article  CAS  Google Scholar 

  • Levy, J. G. (1994). Photosensitizers in photodynamic therapy. Semin Oncol 2: 4–10.

    Google Scholar 

  • Levy, J. G., Waterfield, E., Richter, A., Smits, C., Lui, H., Hruza, L., Anderson, R. & Salvatori, V. (1993). Photodynamic therapy of malignancies with benzoporphyrin derivative monoacid ring A. Proceedings of Photodynamic Thearpy of Cancer Society of Photo-Optical Instrumentaion Engineers, Bellingham, WA. SPIE 2078: 91–98.

    Google Scholar 

  • Lin, S. C., Lin, C. P., Feld, J. R., Duker, J. S. & Puliafito, C. A. (1994). The photodynamic occlusion of choroidal vessels using benzoporphyrin derivative. Current Eye Res 13: 513–522.

    Article  CAS  Google Scholar 

  • North, J., Coombs, R. & Levy, J. G. (1994). Photodynamic inactivation of free and cell-associated HIV-1 using the photosensitizer, benzoporphyrin derivative. J Acquired Immune Deficiency Synd 7: 891–898.

    CAS  Google Scholar 

  • Richter, A. M., Cerruti-Sola, S., Sternberg, E. D., Dolphin, D. & Levy, J. G. (1990). Biodistribution of tritiated benzoporphyirn derivative (3H-BPD-MA), a new potent photosensitizer, in normal and tumor-bearing mice. J Photochem Photobiol B:. Biology 5: 231–244.

    CAS  PubMed  Google Scholar 

  • Richter, A. M., Waterfield, E., Jain, A. K., Allison, B., Sternberg, E. D., Dolphin, D. & Levy, J. G. (1991). Photosensitising potency of structural analogues of benzoporphyrin derivative (BPD) in a mouse tumour model. Br J Cancer 63: 87–93.

    Article  CAS  Google Scholar 

  • Richter, A. M., Waterfield, E., Jain, A. K., Canaan, A. J., Allison, B. A. & Levy, J. G. (1993). Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol 57: 1000–1006.

    Article  CAS  Google Scholar 

  • Schmidt-Erfurth, U., Hasan, T., Gragoudas, E., Michaud, N., Flotte, T. J. & Birngruber, R. (1994). Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology 101: 1953–1961.

    Article  CAS  Google Scholar 

  • Schmidt-Erfurth, U., Hasan, T., Schomacker, K., Flotte, T. & Birngruber, R. (1995). In vivo uptake of liposomal benzoporphyrin derivative and photothrombosis in experimental corneal neovascularization. Laser Surg Med 17: 178–188.

    Article  CAS  Google Scholar 

  • Schmidt-Erfurth, U., Flotte, T. J., Gragoudas, E. S., Schomacker, K., Birngruber, R. & Hasan, T. (1996). Benzoporphyrin-lipoprotein-mediated photodestruction of intraocular tumors. Exp Eye Res 62: 1–10.

    Article  CAS  Google Scholar 

  • Star, W. M., Marijnissen, H. P. A., van den Berg-Blok, S., Versteeg, J. A. C., Franken, K. A. P. & Reinshol, H. S. (1986). Destruction of rat mammary tumour and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res 46: 2532–3540.

    CAS  Google Scholar 

  • Wyss, P., Tadir, Y., Tromberg, B. J., Liaw, L., Krasieva, T. & Berns, M. W. (1994). Benzoporphyrin derivative: a potent photosensitizer for photodynamic destruction of rabbit endometrium. Obs Gynecol 84: 409–414.

    CAS  Google Scholar 

  • Young, L. H., Howard, M. A., Hu, L. K., Kim, R. Y. & Gragoudas, E. S. (1996). Photodynamic therapy of pigmented choroidal melanomas using a liposomal preparation of benzoporphyrin derivative. Arch Ophthamol 114: 186–192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, 40292, KY, USA

    V H Fingar, P K Kik, P S Haydon & T J Wieman

  2. Department of Mathematics, University of Louisville, Louisville, 40292, KY, USA

    P B Cerrito

  3. Department of Anatomy and Neurobiology, University of Louisville, Louisville, 40292, KY, USA

    M Tseng & E Abang

Authors
  1. V H Fingar
    View author publications

    Search author on:PubMed Google Scholar

  2. P K Kik
    View author publications

    Search author on:PubMed Google Scholar

  3. P S Haydon
    View author publications

    Search author on:PubMed Google Scholar

  4. P B Cerrito
    View author publications

    Search author on:PubMed Google Scholar

  5. M Tseng
    View author publications

    Search author on:PubMed Google Scholar

  6. E Abang
    View author publications

    Search author on:PubMed Google Scholar

  7. T J Wieman
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Fingar, V., Kik, P., Haydon, P. et al. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br J Cancer 79, 1702–1708 (1999). https://doi.org/10.1038/sj.bjc.6690271

Download citation

  • Received: 19 June 1998

  • Revised: 01 September 1998

  • Accepted: 02 September 1998

  • Published: 12 March 1999

  • Issue date: 01 April 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690271

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • photodynamic therapy
  • BPD
  • vascular effects, chondrosarcoma

This article is cited by

  • Synergetic Effect of Memecylon edule Mediated AuNPs and Ultrasound Therapy as a Promising Approach Against Proliferation of Pediatric Acute Leukemia Cell Lines

    • Huiqing Guo

    Plasmonics (2024)

  • Transient accumulation of subretinal fluid after half-fluence photodynamic therapy in neovascular age-related macular degeneration

    • Min Ho Kim
    • Yoo-Ri Chung
    • Ji Hun Song

    BMC Ophthalmology (2021)

  • Heat shock protein 90-targeted photodynamic therapy enables treatment of subcutaneous and visceral tumors

    • Kensuke Kaneko
    • Takuya Osada
    • H. Kim Lyerly

    Communications Biology (2020)

  • Photodynamic therapy monitoring with optical coherence angiography

    • M. A. Sirotkina
    • L. A. Matveev
    • N. D. Gladkova

    Scientific Reports (2017)

  • Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model

    • Hing-Yuen Yeung
    • Pui-Chi Lo
    • Wing-Ping Fong

    Cellular & Molecular Immunology (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited