Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
BPD-MA-mediated photosensitization in vitro and in vivo: cellular adhesion and β1 integrin expression in ovarian cancer cells
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 07 May 1999

BPD-MA-mediated photosensitization in vitro and in vivo: cellular adhesion and β1 integrin expression in ovarian cancer cells

  • J M Runnels1,
  • N Chen1,
  • B Ortel1,
  • D Kato2 &
  • …
  • T Hasan1 

British Journal of Cancer volume 80, pages 946–953 (1999)Cite this article

  • 1247 Accesses

  • 82 Citations

  • Metrics details

This article has been updated

Summary

Benzoporphyrin derivative monoacid (BPD-MA) photosensitization was examined for its effects on cellular adhesion of a human ovarian cancer cell line, OVCAR 3, to extracellular matrix (ECM) components. Mild BPD-MA photosensitization (~ 85% cell survival) of OVCAR 3 transiently decreased adhesion to collagen IV, fibronectin, laminin and vitronectin to a greater extent than could be attributed to cell death. The loss in adhesiveness was accompanied by a loss of β1 integrin-containing focal adhesion plaques (FAPs), although β1 subunits were still recognized by monoclonal antibody directed against human β1 subunits. In vivo BPD-MA photosensitization decreased OVCAR 3 adhesiveness as well. Photosensitized adhesion was reduced in the presence of sodium azide and enhanced in deuterium oxide, suggesting mediation by singlet oxygen. Co-localization studies of BPD-MA and Rhodamine 123 showed that the photosensitizer was largely mitochondrial, but also exhibited extramitochondrial, intracellullar, diffuse cytosolic fluorescence. Taken together, these data show that intracellular damage mediated by BPD-PDT remote from the FAP site can affect cellular–ECM interactions and result in loss of FAP formation. This may have an impact on long-term effects of photodynamic therapy. The topic merits further investigation.

Similar content being viewed by others

Investigation on the phenytoin sodium channel-blocker effect in PDT of MDA MB 231 breast cancer using a positively charged PS

Article Open access 01 July 2025

Local monitoring of photosensitizer transient states provides feedback for enhanced efficiency and targeting selectivity in photodynamic therapy

Article Open access 06 October 2023

2D and 3D in vitro photodynamic activities of tetra-substituted symmetric water-soluble cationic zinc(II) phthalocyanines on cancer

Article Open access 11 July 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Aggeler, J., Ward, J., Blackie, M., Barcellos-Hoff, M. H., Strueli, C. H. & Bissell, M. J. (1991). Cytodifferentiation of mouse mammary epithelial cells cultured on a reconsitututed basement reveals striking similarities to development in vivo. J Cell Sci 99: 407–417.

    PubMed  Google Scholar 

  • Albeda, S. M., Mette, S. A., Elder, D. E., Stewart, R., Damjanovich, L., Herlyn, M. & Buck, C. A. (1990). Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res 50: 6757–6764.

    Google Scholar 

  • Athar, M., Elmets, C. A., Bickers, D. R. & Mukhtar, H. (1989). A novel mechanism for the generation of superoxide anions in haematoporphyrins derivative-mediated cutaneous photosensitization. Activation of the xanthine oxidase pathway. J Clin Invest 83: 1137–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aveline, B., Hasan, T. & Redmond, R. (1994). Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA). Photochem Photobiol 59: 328–335.

    Article  CAS  PubMed  Google Scholar 

  • Aveline, B., Hasan, T. & Redmond, R. (1995). The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA). J Photochem Photobiol B: Biol 30: 161–169.

    Article  CAS  Google Scholar 

  • Ben-Hur, E., Carmichael, A., Reisz, P. & Rosenthal, I. (1985). Photochemical generation of superoxide radical and cytotoxicity of phthalocyanines. Int J Rad Biol 47: 145–147.

    CAS  Google Scholar 

  • Brem, H., Gresser, I., Grosfeld, J. & Folkman, J. (1993). The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. J Ped Surg 28: 1253–1257.

    Article  CAS  Google Scholar 

  • Buczek-Thomas, J. A., Chen, N. & Hasan, T. (1998). Integrin-mediated adhesion and signalling in ovarian cancer cells. Cell Signal 10: 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Carter, W. G., Wayner, E. A., Bouchard, T. S. & Kaur, P. (1990). The role of integrins α3β1 in cell-cell and cell-substrate adhesion of human epithelial cells. J Cell Biol 110: 1387–1404.

    Article  CAS  PubMed  Google Scholar 

  • Chan, B. M. C., Matsuura, N., Takada, Y., Zetter, B. R. & Hamler, M. E. (1991). In vitro and in vivo consequences of VLA-2 expression on Rhabdomyosarcoma cells. Science 25: 1600–1602.

    Article  Google Scholar 

  • Chen, L. B. (1989). Fluorescent labeling of mitochondria. Methods Cell Biol 29A: 103–123.

    Google Scholar 

  • Conforti, G., Zanetti, A., Pasquali-Ronchetti, I., Quaglino, D. Jr, Neyrox, P. & Dejana, E. (1990). Modulation of vitronectin receptor binding by membrane lipid composition. J Biol Chem 265: 4011–4019.

    CAS  PubMed  Google Scholar 

  • Danilov, Y. N. & Juliano, R. L. (1989). Phorbol ester modulation of integrin-mediated cell adhesion: a postreceptor event. J Cell Biol 108: 1925–1933.

    Article  CAS  PubMed  Google Scholar 

  • Dedhar, S. & Saulnier, R. (1990). Alterations in integrin receptor expression on chemically transformed human cells: specific enhancement of laminin and collagen receptor complexes. J Cell Biol 110: 481–489.

    Article  CAS  PubMed  Google Scholar 

  • Diprospero, L., Singh, G., Wilson, B. C. & Rainbow, A. J. (1997). Cross-resistant to photofrin-mediated photodynamic therapy and UV light and recovery from photodynamic therapy damage in Rif-8A mouse fibrosarcoma cells measured using viral capacity. J Photochem Photobiol B: Biol 38: 143–151.

    Article  CAS  Google Scholar 

  • Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., Moan, J. & Peng, Q. (1998). Photodynamic therapy [review]. J Natl Cancer Inst 90: 889–905.

    Article  CAS  PubMed  Google Scholar 

  • Elices, M. J., Urray, L. A. & Hemler, M. E. (1991). Receptor functions of the integrin VLA-3: fibronectin, collagen and laminin binding are differentially influenced by arg–gly–asp peptide and by divalent cations. J Cell Biol 112: 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Evans, H. H., Rerko, R. M., Mencl, J., Clay, M. E., Antunez, A. R. & Oleinick, N. L. (1989). Cytotoxic and mutagenic effects of the photodynamic action of chloraluminum phthalocyanine and visible light in L5178Y cells. Photochem Photobiol 49: 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Evenson, J. F., Sommer, S., Moan, J. & Christensen, T. (1984). Tumor-localizing and photosensitizing properties of the main components of haematoporphyrin derivative. Cancer Res 44: 482–486.

    Google Scholar 

  • Fingar, V. H., Weiman, J. & Doak, K. W. (1990). Role of thromboxane and prostacyclin release on photodynamic therapy induced tumor destruction. Cancer Res 50: 2599–2603.

    CAS  PubMed  Google Scholar 

  • Floyd, C. M., Irani, K., Kind, P. D. & Kessler, C. M. (1992). von Willebrand factor interacts with malignant hematopoietic cell lines: evidence for the presence of specific binding sites and modification of von Willebrand factor structure and junction. J Lab Clin Med 119: 467–476.

    CAS  PubMed  Google Scholar 

  • Foster, T. H., Primavera, M. C., Marder, V. J., Hilf, R. & Sporn, L. A. (1991). Photosensitized release of von Willebrand factor from cultured human endothelial cells. Cancer Res 51: 3261–3266.

    CAS  PubMed  Google Scholar 

  • Foultier, M-T, Vonarx-Coinsman, V., Cordel, S., Combre, A. & Patrice, T. (1994). Modulation of colonic cancer cell adhesiveness by haematoporphyrin derivative photodynamic therapy. J Photochem Photobiol B: Biol 23: 9–17.

    Article  CAS  Google Scholar 

  • Giancotti, F. G. & Ruoslahti, E. (1990). Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60: 849–859.

    Article  CAS  PubMed  Google Scholar 

  • Glover, R. A., Bailey, C. S., Barrett, K. E., Wasserman, S. I. & Gigli, I. (1989). Histamine release from rodent and human mast cells induced by protoporphyrin and UV light: studies of the mechanism of mast cell activation in erythropoietic protoporphyria. Br J Dermatol 122: 501–512.

    Article  Google Scholar 

  • Goff, B. A., Blake, J., Bamberg, M. P. & Hasan, T. (1996). Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model. Br J Cancer 74: 1194–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomer, C. J., Rucker, N., Banerjee, A. & Benedict, W. F. (1983). Comparison of mutagenicity and induction of sister chromatid exchanges in Chinese hamster cells exposed to hematoporphyrin derivative, photoradiation, ionizing radiation, or UV radiation. Cancer Res 43: 2622–2627.

    CAS  PubMed  Google Scholar 

  • Gomer, C. J., Ferrario, A. & Murphree, A. L. (1987). The effect of localized porphyrin photodynamic therapy on the induction of tumor metastasis. Br J Cancer 56: 27–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomer, C. J., Ferrario, A., Hayashi, N., Rucker, N., Szirth, B. C. & Murphree, A. L. (1988). Molecular, cellular, and tissue response following photodynamic therapy. Lasers Surg Med 8: 450–463.

    Article  CAS  PubMed  Google Scholar 

  • Gomer, C. J., Rucker, N. & Wong, S. (1989). Properties and applications of photodynamic therapy. Radiat Res 50: 5365–5368.

    Google Scholar 

  • Gomer, C. J., Luna, M., Ferrario, A. & Rucker, N. (1991). Increased transcription and translation of heme oxygenase in Chinese hamster fibroblasts following photodynamic stress or Photofrin II incubation. Photochem Photobiol 53: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B. (1989). How to characterize a biological antioxidant. Free Rad Res Comms 9: 1–32.

    Google Scholar 

  • Hasan, T. & Parrish, J. A. (1996). Photodynamic therapy of cancer. In Cancer Medicine, 4th edn, Holland JF, Frei E III, Bast RC Jr, Kufe DW, Morton DL and Weichselbaum RR (eds), pp. 739–751. Williams and Wilkins: Baltimore.

    Google Scholar 

  • Henderson, B. W. & Donovan, J. M. (1989). Release of prostaglandin E2 from cells by photodynamic treatment in vitro. Cancer Res 49: 6896–6900.

    CAS  PubMed  Google Scholar 

  • Henderson, B. W. & Dougherty, T. J. (1992). How does photodynamic therapy work? Photochem Photobiol 55: 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Ingber, D. & Folkman, J. (1988). Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59: 44–51.

    CAS  PubMed  Google Scholar 

  • Jamieson, G. A. (1987). Mechanisms of interaction between platelets and tumor cells using homologous human systems. In Hemostasis and Cancer, Musbek L (ed.) Boca Raton, FL: CRC Press .

    Google Scholar 

  • Karpatkin, S., Pearlstein, E., Abvrogio, C. & Coller, B. S. (1988). Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81: 1012–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimel, S., Tromberg, B. J., Roberts, W. G. & Berns, M. W. (1989). Photochem Photobiol 50: 175–183.

    Article  CAS  PubMed  Google Scholar 

  • Kornberg, L. & Juliano, R. L. (1991). Signal transduction from the extracellar matrix: the integrin-tyrosine kinase connection. Trends Pharmacol 13: 95

    Google Scholar 

  • Levy, J. G. (1994). Photosensitizers in photodynamic therapy. Sem Onc 21: 5–10, Suppl. 15.

    Google Scholar 

  • Lilge, L., Dabrowski, W., Holdsworth, D. W., Blake, J., Kato, D., Wilson, B. C. & Hasan, T. (1994). Light delivery and dosimetry for photodynamic therapy in an ovarian cancer mouse model. Proc SPIE 2133: 150–161.

    Article  Google Scholar 

  • Maillard, P., Krausz, P., Gianotti, C. & Gaspard, S. (1980). Photoinduced activation of molecular-oxygen by various porphyrins, phthalocyanines, pyridinoporphyrazins and their metal derivatives. J Orgmet 197: 285–290.

    Article  CAS  Google Scholar 

  • Malik, Z. & Djaldetti, M. (1980). Destruction of erythroleukemia, myelocytic leukemia and Burkitt lymphoma cells by photoactivated porphyrin. Int J Cancer 26: 495–500.

    Article  CAS  PubMed  Google Scholar 

  • Mareel, M. M., Behrens, J., Birchmeier, W., Bruyne, G. K., Vlemickx, L., Hoogewijis, A., Fiers, W. C. & Van Roy, F. M. (1991). Down-regulation of E-cadherin expression in Madin Darby canine kidney (MDCK) cells inside tumors of nude mice. Int J Cancer 47: 922–928.

    Article  CAS  PubMed  Google Scholar 

  • Margaron, P., Sorrent, R. & Levy, J. G. (1997). Photodynamic therapy inhibits cell adhesion without altering integrin expression. Biochim Biophys Acta 1359: 200–210.

    Article  CAS  PubMed  Google Scholar 

  • Moan, J. & Vistnes, A. I. (1986). Porphyrin photosensitization of proteins in cell membranes as studied by spin-labeling and by quantification of DTNB-reactive SH-groups. Photochem Photobiol 44: 15–19.

    Article  CAS  PubMed  Google Scholar 

  • Molpus, K. L., Kato, D., Lilge, L., Hamblin, M. R., Bamberg, M. & Hasan, T. (1996). Intraperitoneal photodynamic therapy of human epithelial ovarian carcinomatosis in a xenograft murine model. Cancer Res 56: 1075–1082.

    CAS  PubMed  Google Scholar 

  • Plantefaber, L. C. & Hynes, R. O. (1989). Changes in integrin receptors on oncogenically transformed cells. Cell 56: 281–290.

    Article  CAS  PubMed  Google Scholar 

  • Reich, R., Royce, L. & Martin, G. (1989). Eicosapentaenoic acid reduces the invasive and metastatic activities of malignant tumor cells. Biochem Biophys Res Commun 160: 559–564.

    Article  CAS  PubMed  Google Scholar 

  • Richter, A. M., Kelly, B., Chow, J., Liu, D. J., Towers, G. H. N., Dolphin, D. & Levy, J. G. (1987). Preliminary studies on a more effective phototoxic agent than hematoprophyrin. J Natl Cancer Inst 79: 1327–1332.

    CAS  PubMed  Google Scholar 

  • Richter, A. M., Cerruto-Sola, S., Sternberg, E. D., Dolphin, D. & Levy, J. G. (1990). Biodistribution of tritiated benzoporphyrin derivative (3H-BPD-MA), a new potent photosensitizer in normal and tumor bearing mice. J Photochem Photobiol B: Biol 5: 231–244.

    Article  CAS  Google Scholar 

  • Roosien, F. F., De Ruk, D., Bikker, A. & Ross, E. (1989). Involvement of LFA-1 in lymphoma invasion and metastasis demonstrated with LFA-1 deficient mutants. J Cell Biol 108: 1979–1985.

    Article  Google Scholar 

  • Schreiner, C., Fisher, M., Hussein, S. & Juliano, R. L. (1989). Increased tumorigenicity of fibronectin receptor deficient Chinese hamster ovary cell variant. Cancer Res 51: 1738–1740.

    Google Scholar 

  • Schreiner, C. L., Bauer, J. S., Danilov, Y. N., Hussein, S., Sczekan, M. M. & Juliano, R. L. (1991). Isolation and characterization of Chinese hamster ovary cell variants deficient in the expression of fibronectin receptor. J Cell Biol 109: 3157–3167.

    Article  Google Scholar 

  • Schwartz, M. A. (1992). Transmembrane signalling by integrins. Trends Cell Biol 2: 304–308.

    Article  CAS  PubMed  Google Scholar 

  • Singh, G., Wilson, B. C., Sharkey, S. M., Browman, G. P. & Deschamps, P. (1991). Resistance to photodynamic therapy in radiation induced fibrosarcoma-1 and Chinese hamster ovary multi-drug-resistant cells in vitro. Photochem Photobiol 54: 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Vonarx, V., Foultier, M. T., Xavier De Brito, L., Anasagasti, L., Morlet, L. & Patrice, T. (1995). Photodynamic therapy decreases cancer colonic cell adhesiveness and metastatic potential. Res Exp Med 195: 101–116.

    Article  CAS  Google Scholar 

  • Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E. & Damsky, C. H. (1989). Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109: 877–889.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm, O., Hafter, R., Coppenrath, E., Pflanz, M. A., Schmitt, M., Babic, R., Linke, R., Gossner, W. & Graeff, H. (1988). Fibrin-fibronectin compounds in human ovarian tumor ascites and their possible relation to tumor stroma. Cancer Res 48: 3507–3514.

    CAS  PubMed  Google Scholar 

  • Wilson, B. C. (1989). Photodynamic therapy: light delivery and dosage for second-generation photosensitizers. Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use, Wiley (Ciba Foundation Symposium 146): Chichester 60–77.

    Google Scholar 

  • Yamamoto, K., Murae, M. & Yasuda, M. (1991). RGD-containing peptides inhibit experimental peritoneal seeding of human ovarian cancer cells. Acta Obstetrica et Gynacologica Japonica 43: 1687–1692.

    CAS  Google Scholar 

  • Young, M. R., Young, M. E. & Wepsic, H. T. (1987). Effect of prostaglandon E2-producing nonmetastatic Lewis lung carcinoma cells on the migration of prostaglandin E2-responsive metastic Lewis lung carcinoma cells. Cancer Res 47: 3679–3683.

    CAS  PubMed  Google Scholar 

  • Zhang, Z., Turner, D. C., Drzewiecki, G. J., Hinshaw, D. B. & Hyslop, P. A. (1994). Impairment of integrin-mediated cell-matrix adhesion in oxidant-stressed PC12 cells. Brain Res 662: 1–2, 189–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Dermatology, Wellman Laboratories of Photomedicine, Massachusetts General Hospital WEL 224, Boston, 02114, MA, USA

    J M Runnels, N Chen, B Ortel & T Hasan

  2. Vincent Gynecologic Oncology Service, Massachusetts General Hospital – VBK-1, Boston, 02114, MA, USA

    D Kato

Authors
  1. J M Runnels
    View author publications

    Search author on:PubMed Google Scholar

  2. N Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. B Ortel
    View author publications

    Search author on:PubMed Google Scholar

  4. D Kato
    View author publications

    Search author on:PubMed Google Scholar

  5. T Hasan
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Runnels, J., Chen, N., Ortel, B. et al. BPD-MA-mediated photosensitization in vitro and in vivo: cellular adhesion and β1 integrin expression in ovarian cancer cells. Br J Cancer 80, 946–953 (1999). https://doi.org/10.1038/sj.bjc.6690448

Download citation

  • Received: 12 March 1998

  • Revised: 14 September 1998

  • Accepted: 24 November 1998

  • Published: 07 May 1999

  • Issue date: 01 June 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690448

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • BPD-MA
  • photosensitization
  • cellular adhesion
  • ECM proteins
  • OVCAR 3
  • ovarian cancer

This article is cited by

  • Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling

    • Nazareth Milagros Carigga Gutierrez
    • Núria Pujol-Solé
    • Mans Broekgaarden

    Cancer and Metastasis Reviews (2022)

  • In vitro and in vivo antitumor activity of a novel porphyrin-based photosensitizer for photodynamic therapy

    • Jing-Jing Chen
    • Ge Hong
    • Wen-Jun Cao

    Journal of Cancer Research and Clinical Oncology (2015)

  • Low-Fluence Photodynamic Treatment Modifies Functional Properties of Vascular Cell Wall

    • O. O. Udartseva
    • E. R. Andreeva
    • I. N. Vozovikov

    Bulletin of Experimental Biology and Medicine (2011)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited