Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-α and retinoids
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 11 June 1999

Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-α and retinoids

  • T Brodowicz1,
  • C Wiltschke1,
  • D Kandioler-Eckersberger3,
  • T W Grunt1,
  • M Rudas4,
  • S M Schneider1,
  • M Hejna1,
  • A Budinsky1 &
  • …
  • C C Zielinski1,2,5 

British Journal of Cancer volume 80, pages 1350–1358 (1999)Cite this article

  • 1843 Accesses

  • 35 Citations

  • Metrics details

This article has been updated

Summary

Uncontrolled proliferation and a defect of apoptosis constitute crucial elements in the development and progression of tumours. Among many other biological response modifiers known to influence these mechanisms, the efficacy of retinoids and interferons in the treatment of various malignant entities is currently matter of discussion. In the present study, we have investigated the effects of 9-cis-retinoic acid (9cRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (tRA) and interferon-α on proliferation and apoptosis of human soft tissue sarcoma (STS) cell lines HTB-82 (rhabdomyosarcoma), HTB-91 (fibrosarcoma), HTB-92 (liposarcoma), HTB-93 (synovial sarcoma) and HTB-94 (chondrosarcoma) in relation to p53 genotype as well as p53 expression. HTB-91, HTB-92 and HTB-94 STS cells exhibited mutant p53, whereas wild-type p53 was found in HTB-93 STS cells, and a normal p53 status in HTB-82 STS cells, carrying a silent point mutation only. Interferon-α, irrespective of p53 status, inhibited the proliferation of all five cell lines dose- and time-dependently. Similarly, 9cRA, 13cRA and tRA decreased the proliferation of HTB-82 and HTB-93 STS cells, whereas the proliferation of p53-mutated HTB-91, HTB-92 and HTB-94 STS cells remained unchanged. Furthermore, only 9cRA and tRA were capable of inducing apoptosis in HTB-82 and HTB-93 STS cells, whereas HTB-91, HTB-92 and HTB-94 STS cells did not undergo apoptosis under the influence of 9cRA or tRA. Retinoic acid receptor (RAR)-α and RAR-β mRNA were not detectable by Northern blot analysis in the five STS cell lines, whereas mRNA for the universal retinoic acid receptor, RAR-γ, was expressed in all STS cell lines indicating that retinoid resistance was not associated with a lack of RAR expression. Apoptosis was not induced by interferon-α or 13cRA in any of the five STS cell lines tested. Our results indicate that within the panel of tested STS cell lines, inhibition of proliferation and induction of apoptosis result from different mechanisms which differ in their dependence upon the presence of intact p53.

Similar content being viewed by others

Cell cycle duration determines oncogenic transformation capacity

Article Open access 30 April 2025

Subtype-selective induction of apoptosis in translocation-related sarcoma cells induced by PUMA and BIM upon treatment with pan-PI3K inhibitors

Article Open access 27 February 2023

Enhancement of colorectal cancer therapy through interruption of the HSF1-HSP90 axis by p53 activation or cell cycle inhibition

Article Open access 09 April 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Aas, T., Borresen, A. L., Geisler, S., Smith-Sorensen, B., Johnson, H., Varhaug, J. E., Akslen, L. A. & Lonning, P. E. (1996). Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2: 811–814.

    Article  CAS  Google Scholar 

  • Agarwal, M. L., Agarwal, A., Taylor, W. R. & Stark, G. R. (1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92: 8493–8497.

    Article  CAS  Google Scholar 

  • Antman, K., Crowley, J., Balcerzak, S. P., Rivkin, S. E., Weiss, G. R., Elias, A., Natale, R. B., Cooper, R. M., Barlogie, B., Trump, D. L., Doroshow, J. H., Aisner, J., Pugh, R. P., Weiss, R. B., Cooper, B. A., Clamond, G. H. & Baker, L. H. (1993). An intergroup phase III randomized study of doxorubicin and dacarbacine with or without ifosfamide and mesna in advanced soft tissue and bone sarcomas. J Clin Oncol 11: 1276–1285.

    Article  CAS  Google Scholar 

  • Antman, K. H. (1997). Adjuvant therapy of sarcomas of soft tissue. Semin Oncol 24: 556–560.

    CAS  PubMed  Google Scholar 

  • Berggren Soderlund, M., Johannesson, G. & Fex, G. (1995). Expression of human all-trans-retinoic acid receptor beta and its ligand-binding domain in Escherichia coli. Biochem J 308: 353–359.

    Article  Google Scholar 

  • Bergh, J., Norberg, T., Sjogren, S., Lindgren, A. & Holmberg, L. (1995). Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1: 1029–1034.

    Article  CAS  Google Scholar 

  • Borden, E. C., Amato, D. A., Edmonson, J. H., Ritch, P. S. & Shiraki, M. (1990). Randomized comparison of doxorubicin and vindesine to doxorubicin for patients with metastatic soft-tissue sarcomas. Cancer 66: 862–867.

    Article  CAS  Google Scholar 

  • Bracey, T. S., Miller, J. C., Preece, A. & Paraskeva, C. (1995). γ-Radiation-induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild-type p53. Oncogene 10: 2391–2396.

    CAS  PubMed  Google Scholar 

  • Brodowicz, T., Kotz, R., Wiltschke, C., Zielinski, C. C. & Ritschl, P. (1997). Re: isolated limb perfusion with high-dose tumor necrosis factor-alpha in combination with interferon-γ and melphalan for non-resectable extremity soft tissue sarcomas: a multicenter trial. J Clin Oncol 15: 2174–2175.

    Article  CAS  Google Scholar 

  • Canman, C. E., Gilmer, T. M., Coutts, S. B. & Kastan, M. B. (1995). Growth factor modulation of p53-mediated growth arrest versus apoptosis. Gene Dev 9: 600–611.

    Article  CAS  Google Scholar 

  • Crouch, G. D. & Helman, L. J. (1991). All-trans-retinoic acid inhibits the growth of human rhabdomyosarcoma cell lines. Cancer Res 51: 4882–4887.

    CAS  PubMed  Google Scholar 

  • Delia, D., Aiello, A., Lombardi, L., Pelicci, P. G., Grignani, F. r., Grignani, F. a., Formelli, F., Menard, S., Costa, A., Veronesi, U. & Pierotti, M. A. (1993). N-(4-hydroxyphenyl) retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid. Cancer Res 53: 6036–6041.

    CAS  PubMed  Google Scholar 

  • Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. (1994). DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8: 2540–2551.

    Article  CAS  Google Scholar 

  • Dmitrovsky, E. (1997). N-(4-hydroxyphenyl)retinamide activation of a distinct pathway signaling apoptosis. J Natl Cancer Inst 89: 1179–1181.

    Article  CAS  Google Scholar 

  • Elledge, R. M., Gray, R., Mansour, E., Yu, Y., Clark, G. M. & Ravdin, P. (1995). Accumulation of p53 protein as a possible predictor of response to adjuvant combination chemotherapy with cyclophosphamide, methotrexate, fluorouracil, and prednisone for breast cancer. J Natl Cancer Inst 87: 1254–1256.

    Article  CAS  Google Scholar 

  • Engers, R., van Roy, F., Heymer, T., Ramp, U., Moll, R., Dienst, M., Friebe, U., Pohl, A., Gabbert, H. E. & Gerharz, C. D. (1996). Growth inhibition in clonal subpopulations of a human epithelioid sarcoma cell line by retinoic acid and tumour necrosis factor alpha. Br J Cancer 73: 491–498.

    Article  CAS  Google Scholar 

  • Fisher, G. J., Datta, S. C. & Voorhees, J. J. (1998). Retinoic acid receptor-γ in human epidermis preferentially traps all-trans retinoic acid as its ligand rather than 9-cis retinoic acid. J Invest Dermatol 110: 297–300.

    Article  CAS  Google Scholar 

  • Gabbert, H. E., Gerharz, C. D., Biesalski, H. K., Engers, R. & Luley, C. (1988). Terminal differentiation and growth inhibition of a rat rhabdomyosarcoma cell line (BA-HAN-1C) in vitro after exposure to retinoic acid. Cancer Res 48: 5264–5269.

    CAS  PubMed  Google Scholar 

  • Gherlinzoni, F., Bacci, F., Picci, P., Capanna, R., Calderoni, P., Lorenzi, E. G., Bernini, M., Emiliani, E., Barbieri, E., Normand, A. & Campanacci, M. (1986). A randomized trial for the treatment of high-grade soft-tissue sarcomas of the extremities: preliminary observations. J Clin Oncol 4: 552–558.

    Article  CAS  Google Scholar 

  • Giandomenico, V., Lancillotti, F., Fiorucci, G., Percario, Z. A., Rivabene, R., Malorni, W., Affabris, E. & Romeo, G. (1997). Retinoic acid and IFN inhibition of cell proliferation is associated with apoptosis in squamous carcinoma cell lines: role of IRF-1 and TGase II-dependent pathways. Cell Growth Differ 8: 91–100.

    CAS  PubMed  Google Scholar 

  • Harant, H., Lindley, I., Uthman, A., Ballaun, C., Kruptiza, G., Grunt, T., Huber, H. & Dittrich, C. (1995). Regulation of interleukin-8 gene expression by all-trans retinoic acid. Biochem Biophys Res Commun 210: 898–906.

    Article  CAS  Google Scholar 

  • Harvey, M., Sands, A. T., Weiss, R. S., Hegi, M. E., Wiseman, R. W., Pantazis, P., Giovanella, B. C., Tainsky, M. A., Bradley, A. & Donehower, L. A. (1993). In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8: 2457–2467.

    CAS  PubMed  Google Scholar 

  • Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336.

    Article  CAS  Google Scholar 

  • Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. (1991). Participation of p53 in the cellular response to DNA damage. Cancer Res 51: 6304–6311.

    CAS  PubMed  Google Scholar 

  • Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26: 239–257.

    Article  CAS  Google Scholar 

  • Lehman, T. A., Bennett, W. P., Metcalf, R. A., Welsh, J. A., Ecker, J., Modali, R. V., Ullrich, S., Romano, J. W., Appella, E., Testa, J. R., Gerwin, B. I. & Harris, C. C. (1991). P53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res 51: 4090–4096.

    CAS  PubMed  Google Scholar 

  • Lotan, R. (1995). Retinoids and apoptosis: implications for cancer chemoprevention and therapy. J Natl Cancer Inst 87: 1655–1657.

    Article  CAS  Google Scholar 

  • Lovat, P. E., Irving, H., Annicchiarico-Petruzzelli, M., Bernassola, F., Malcolm, A. J., Pearson, A. D., Melino, G. & Redfern, C. P. (1997). Apoptosis of N-type neuroblastoma cells after differentiation with 9-cis-retinoic acid and subsequent washout. J Natl Cancer Inst 89: 446–452.

    Article  CAS  Google Scholar 

  • Lutzker, S. G. & Levine, A. J. (1996). A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nature Med 2: 804–810.

    Article  CAS  Google Scholar 

  • Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P. & Evans, R. M. (1995). The nuclear receptor superfamily: the second decade. Cell 83: 835–839.

    Article  CAS  Google Scholar 

  • Oridate, N., Suzuki, S., Higuchi, M., Mitchell, M. F., Hong, W. K. & Lotan, R. (1997). Involvement of reactive oxygen species in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. J Natl Cancer Inst 89: 1191–1198.

    Article  CAS  Google Scholar 

  • Ravaud, A., Nguyen, B. B. & Coindre, J. M. (1990). Adjuvant chemotherapy with CYVADIC in high-risk soft tissue sarcoma: a randomized prospective trial. In Adjuvant Therapy of Cancer VI, Salmon SE WB Saunders: Philadelphia 556–566.

    Google Scholar 

  • Repa, J. J., Berg, J. A., Kaiser, M. E., Hanson, K. K., Strugnell, S. A. & ClagettDame, M. (1997). One-step immunoaffinity purification of recombinant human retinoic acid receptor γ. Protein Expres Purif 9: 319–330.

    Article  CAS  Google Scholar 

  • Rosenberg, S. A., Tepper, J., Glatstein, E., Costa, J., Baker, A., Brennan, M., De Moss, E. V., Seipp, C., Sindelar, W. F., Sugarbaker, P. & Wesley, R. (1982). The treatment of soft-tissue sarcoma of the extremities: prospective randomized evaluations of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Ann Surg 196: 305–315.

    Article  CAS  Google Scholar 

  • Rosso, R., Sertoli, M. R., Queirolo, P., Sanguineti, O., Barzacchi, M. C., Mariani, G. L., Miglio, L., Venturini, M. & Toma, S. (1992). An outpatient phase I study of a subcutaneous interleukin-2 and intramuscular α-2a-interferon combination in advanced malignancies. Ann Oncol 3: 559–563.

    Article  CAS  Google Scholar 

  • Ryan, J. J., Danish, R., Gottlieb, C. A. & Clarke, M. F. (1993). Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol Cell Biol 13: 711–719.

    Article  CAS  Google Scholar 

  • Sarcoma Meta-analysis Collaboration (1997). Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: meta-analysis of individual data. Lancet 350: 1647–1654.

  • Sarkis, A. S., Bajorin, D. F., Reuter, V. E., Herr, H. W., Netto, G., Zhang, Z. F., Schultz, P. K., Cordon-Cardo, C. & Scher, H. I. (1995). Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAV. J Clin Oncol 13: 1384–1390.

    Article  CAS  Google Scholar 

  • Shao, Z. M., Dawson, M. I., Li, X. S., Rishi, A. K., Sheikh, M. S., Han, Q. X., Ordonez, J. V., Shroot, B. & Fontana, J. A. (1995). p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene 11: 493–504.

    CAS  Google Scholar 

  • Slichenmyer, W. J., Nelson, W. G., Slebos, R. J. & Kastan, M. B. (1993). Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 53: 4164–4168.

    CAS  PubMed  Google Scholar 

  • Stewart, N., Hicks, G. G., Paraskevas, F. & Mowat, M. (1995). Evidence for a second cell cycle block at G2/M by p53. Oncogene 10: 109–115.

    CAS  PubMed  Google Scholar 

  • Tallman, M. S., Andersen, J. W., Schiffer, C. A., Appelbaum, F. R., Feusner, J. H., Ogden, A., Shepherd, L., Willman, C., Bloomfield, C. D., Rowe, J. M. & Wiernik, P. H. (1997). All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med 337: 1021–1028.

    Article  CAS  Google Scholar 

  • Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462.

    Article  CAS  Google Scholar 

  • Toma, S., Isnardi, L., Raffo, P., Dastoli, G., De Francisci, E., Riccardi, L., Palumbo, R. & Bollag, W. (1997). Effects of all-trans-retinoic acid and 13-cis-retinoic acid on breast-cancer cell lines: growth inhibition and apoptosis induction. Int J Cancer 70: 619–627.

    Article  CAS  Google Scholar 

  • van der Leede, B. M., van den Brink, C. E. & van der Saag, P. T. (1993). Retinoic acid receptor and retinoid X receptor expression in retinoic acid-resistant human tumor cell lines. Mol Carcinog 8: 112–122.

    Article  CAS  Google Scholar 

  • Wu, Y. N., Gadina, M., Tao-Cheng, J. H. & Youle, R. J. (1994). Retinoic acid disrupts the Golgi apparatus and increases the cytosolic routing of specific protein toxins. J Cell Biol 125: 743–753.

    Article  CAS  Google Scholar 

  • Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. & Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Clinical Division of Oncology, Vienna, Austria

    T Brodowicz, C Wiltschke, T W Grunt, S M Schneider, M Hejna, A Budinsky & C C Zielinski

  2. Department of Medicine I, Chair of medical Experimental Oncology, Vienna, Austria

    C C Zielinski

  3. Department of Surgery, Vienna, Austria

    D Kandioler-Eckersberger

  4. Department of Clinical Pathology, University Hospital, Vienna, Austria

    M Rudas

  5. Ludwig Boltzmann Institute for Clinical Experimental Oncology, Vienna, Austria

    C C Zielinski

Authors
  1. T Brodowicz
    View author publications

    Search author on:PubMed Google Scholar

  2. C Wiltschke
    View author publications

    Search author on:PubMed Google Scholar

  3. D Kandioler-Eckersberger
    View author publications

    Search author on:PubMed Google Scholar

  4. T W Grunt
    View author publications

    Search author on:PubMed Google Scholar

  5. M Rudas
    View author publications

    Search author on:PubMed Google Scholar

  6. S M Schneider
    View author publications

    Search author on:PubMed Google Scholar

  7. M Hejna
    View author publications

    Search author on:PubMed Google Scholar

  8. A Budinsky
    View author publications

    Search author on:PubMed Google Scholar

  9. C C Zielinski
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Brodowicz, T., Wiltschke, C., Kandioler-Eckersberger, D. et al. Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-α and retinoids. Br J Cancer 80, 1350–1358 (1999). https://doi.org/10.1038/sj.bjc.6690528

Download citation

  • Received: 02 July 1998

  • Revised: 04 November 1998

  • Accepted: 08 December 1998

  • Published: 11 June 1999

  • Issue date: July 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690528

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • apoptosis
  • soft tissue sarcoma
  • interferon-α
  • retinoids
  • p53

This article is cited by

  • Ethnozoological importance of Eisenia fetida and experimental validation of its anticancer activity in ascites Dalton’s lymphoma (DL) bearing mice

    • Manash Pratim Borah
    • Surya Bali Prasad

    Future Journal of Pharmaceutical Sciences (2024)

  • Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid

    • Matthew F W Gee
    • Rika Tsuchida
    • David Malkin

    Oncogene (2005)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited