Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 09 July 1999

Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis

  • L Hilakivi-Clarke1,2,
  • I Onojafe1,
  • M Raygada1,2,
  • E Cho1,3,
  • T Skaar1,3,
  • I Russo4 &
  • …
  • R Clarke1,3 

British Journal of Cancer volume 80, pages 1682–1688 (1999)Cite this article

  • 1581 Accesses

  • 174 Citations

  • 9 Altmetric

  • Metrics details

This article has been updated

Summary

Prepubertal exposure to a pharmacological dose (500 mg kg–1) of the phyto-oestrogen genistein can reduce the incidence and multiplicity of carcinogen-induced mammary tumours in rats. However, such an exposure also disrupts the function of the hypothalamic–pituitary–gonadal axis, making it unsuitable for breast cancer prevention. We studied whether prepubertal exposure to genistein at a total body dose broadly comparable to the level typical of Oriental countries, approximately 1 mg kg–1 body weight, affects mammary tumorigenesis. We also studied whether prepubertal exposure to zearalenone, a major source for phyto-oestrogens in the USA, influences breast cancer risk. Prepubertal rats were treated between postnatal days 7 and 20, with 20 μg (~ 1 mg kg–1 body weight) of either genistein or zearalenone. Zearalenone exposure significantly reduced both the incidence and multiplicity of mammary tumours induced by 7,12-dimethylbenz(a)anthracene (DMBA). Genistein exposure significantly reduced tumour multiplicity, but not tumour incidence, when compared with vehicle-treated animals. Furthermore, 60% of the tumours in the genistein group were not malignant, while all the tumours analysed for histopathology in the vehicle and zearalenone groups were adenocarcinomas. A higher number of differentiated alveolar buds, and lower number of terminal ducts, were present in the DMBA-treated mammary glands of the phyto-oestrogen exposed rats. The concentration of oestrogen receptor (ER) binding sites after the DMBA treatment was low in the mammary glands of all groups but a significantly higher proportion of the glands in the zearalenone exposed rats were ER-positive (i.e. ER levels ≥ 5 fmol mg–1 protein) than the glands of the vehicle controls. Our data suggest that a prepubertal exposure to a low dose of either zearalenone or genistein may protect the mammary gland from carcinogen-induced malignant transformation, possibly by increasing differentiation of the mammary epithelial tree.

Similar content being viewed by others

Genomic hallmarks of endocrine therapy resistance in ER/PR+HER2- breast tumours

Article Open access 10 February 2025

Simultaneous screening of overexpressed genes in breast cancer for oncogenic drivers and tumor dependencies

Article Open access 09 June 2024

Atorvastatin lowers breast cancer risk by reversing an early tumorigenic signature

Article Open access 01 August 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Akiyama, T., Ishida, J., Nakagawa, S., Ogawa, H., Watanabe, S., Itou, N., Shibata, M. & Fukami, Y. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinase. J Biol Chem 262: 5592–5595.

    CAS  PubMed  Google Scholar 

  • Barnes, S. (1997). The chemopreventive properties of soy isoflavonoids in animal models of breast cancer. Breast Cancer Res Treat 46: 169–179.

    Article  CAS  Google Scholar 

  • Bern, H. A., Mills, K. T. & Edery, M. (1985). Estrogen-associated defects in rodent mammary gland development. In Estrogens in the Environment, McLachlan JA (ed), pp. 319–326 Elsevier: Amsterdam

    Google Scholar 

  • Burgess, L. W., Nelson, P. E. & Toussoun, T. A. (1982). Characterization, geographic distribution and ecology of Fusarium crookwellense sp. nov. Trans Br Mycol Soc 79: 497–505.

    Article  Google Scholar 

  • Clark, G. M. & McGuire, W. L. (1988). Steroid receptors and other prognostic factors in primary breast cancer. Semin Oncol 15: 20–25.

    CAS  PubMed  Google Scholar 

  • Clarke, R. (1997). Issues in experimental design and analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models. Breast Cancer Res Treat 46: 255–278.

    Article  CAS  Google Scholar 

  • Clarke, R., Dickson, R. B. & Lippman, M. E. (1992). Hormonal aspects of breast cancer. Growth factors, drugs and stromal interactions. Crit Rev Oncol Hematol 12: 1–23.

    Article  CAS  Google Scholar 

  • Collins, B. M., McLachlan, J. A. & Arnold, S. F. (1997). The estrogenic and antiestrogeneic activities of phytochemicals with the human estrogen receptor expressed in yeast. Steroids 62: 365–372.

    Article  CAS  Google Scholar 

  • Ekbom, A., Trichopoulos, D., Adami, H. O., Hsieh, C. C. & Lan, S. J. (1992). Evidence of prenatal influences on breast cancer risk. Lancet 340: 1015–1018.

    Article  CAS  Google Scholar 

  • Faber, K. A. & Hughes, C. L. J. (1991). The effect of neonatal exposure to diethylstilbestrol, genistein, and zearalenone on pituitary responsiveness and sexually dimorphic nucleus volume in the castrated adult rat. Biol Reprod 45: 649–653.

    Article  CAS  Google Scholar 

  • Freireich, E. J., Gehan, E. A., Rall, D. P., Schmidt, L. H. & Skipper, H. E. (1966). Quantitative comparison of toxicity of anticancer agents in the mouse, rat, hamster, dog, monkey and man. Cancer Chemother Rep 50: 219–244.

    CAS  PubMed  Google Scholar 

  • Fukutake, M., Takahashi, M., Ishida, K., Kawamura, H., Sugimura, T. & Wakabayashi, K. (1996). Quantification of genistein and genistin in soybeans and soybean products. Food Chem Toxicol 34: 457–461.

    Article  CAS  Google Scholar 

  • Gotoh, T., Yamada, K., Yin, H., Ito, A., Kataoka, T. & Dohi, K. (1998). Chemoprevention of N-nitroso-N-methylurea-induced rat mammary carcinogenesis by soy foods or biochanin A. Jpn J Cancer Res 89: 137–142.

    Article  CAS  Google Scholar 

  • Grodstein, F., Stampfer, M. J., Colditz, G. A., Willett, W. C., Manson, J. E., Joffe, M., Rosner, B., Fuchs, C., Hankinson, S. E., Hunter, D. J., Hennekens, C. H. & Speizer, F. E. (1997). Postmenopausal hormone therapy and mortality. N Eng J Med 336: 1769–1775.

    Article  CAS  Google Scholar 

  • Grubbs, C. J., Farneli, D. R., Hill, D. L. & McDonough, K. C. (1985). Chemoprevention of n-nitro-n-methylurea-induced mammary cancers by pretreatment with 17beta-estradiol and progesterone. J Natl Cancer Inst 74: 927–931.

    CAS  PubMed  Google Scholar 

  • Hagler, W. M., Tyczkowska, K. & Hamilton, P. B. (1984). Simultaneous occurrence of deoxynivalenol, zearalenone, and aflatoxin in 1982 scabby wheat from the Midwestern United States. Appl Environ Microbiol 47: 151–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanfelt, J. J. (1997). Statistical approaches to experimental design and data analysis of in vivo studies. Breast Cancer Res Treat 46: 279–302.

    Article  CAS  Google Scholar 

  • Harding, C., Tetlow, L., McMichael Phillips, D., Osundeko, O., Potten, C. S. & Bundred, N. J. (1997). Oestrogenic effects of soy on nipple aspirate fluid. Breast Cancer Res Treat 46: 80-Abstract

  • Haslam, S. Z. (1988). Progesterone effects on deoxyribonucleic acid synthesis in normal mouse mammary glands. Endocrinology 122: 464–470.

    Article  CAS  Google Scholar 

  • Haslam, S. (1989). The ontogeny of mouse mammary gland responsiveness to ovarian steroid hormones. Endocrinology 125: 2766–2772.

    Article  CAS  Google Scholar 

  • Hawrylewicz, E. J., Huang, H. H. & Blair, W. H. (1991). Dietary soybean isolate and methionine supplementation affect mammary tumor progression in rats. J Nutr 121: 1693–1698.

    Article  CAS  Google Scholar 

  • Hilakivi-Clarke, L., Cho, E., Raygada, M. & Kenney, N. (1997a). Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor alpha, and estrogen receptor antagonist ICI 182, 780. J Cell Physiol 170: 279–289.

    Article  CAS  Google Scholar 

  • Hilakivi-Clarke, L., Clarke, R., Onojafe, I., Raygada, M., Cho, E. & Lippman, M. E. (1997b). A maternal diet high in n-6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA 94: 9372–9377.

    Article  CAS  Google Scholar 

  • Hilakivi-Clarke, L. A., Raygada, M., Stoica, A. & Martin, M-B (1998). Consumption of a high-fat diet during pregnancy alters estrogen receptor content, protein kinase C activity and morphology of mammary gland in the mother and her female offspring. Cancer Res 58: 654–660.

    CAS  PubMed  Google Scholar 

  • Hirohata, T., Shigematsu, T., Nomura, A. M. Y., Nomura, Y., Horie, A. & Hirohata, I. (1985). Occurrence of breast cancer in relation to diet and reproductive history: a case-control study in Fukuoka, Japan. Natl Cancer Inst Monogr 69: 187–190.

    CAS  PubMed  Google Scholar 

  • Hsieh, C. Y., Santell, R. C., Haslam, S. Z. & Helferich, W. G. (1998). Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res 58: 3833–3838.

    CAS  PubMed  Google Scholar 

  • Ingram, D., Sanders, K., Kolybaba, M. & Lopez, D. (1997). Case-control study of phytoestrogens and breast cancer. Lancet 350: 990–994.

    Article  CAS  Google Scholar 

  • Kuiper-Goodman, T. (1990). Uncertainties in the risk assessment of three mycotoxins: aflatoxin, ochratoxin, and zearalenone. Can J Physiol Pharm 68: 1017–1024.

    Article  CAS  Google Scholar 

  • Lee, H. P., Gourley, L., Duffy, S. W., Esteve, J., Lee, J. & Day, N. E. (1991). Dietary effects on breast cancer risk in Singapore. Lancet 337: 1197–1200.

    Article  CAS  Google Scholar 

  • Lopez, J., Ogren, L., Verjan, R. & Talamantes, F. (1988). Effects of perinatal exposure to a synthetic estrogen and progestin on mammary tumorigenesis in mice. Teratology 38: 129–134.

    Article  CAS  Google Scholar 

  • Lu, L. J., Broemeling, L., Marshall, M. & Ramanujam, V. M. (1995). A simplified method to quantify isoflavones in commercial soybean diets and human urine after legume consumption. Cancer Epidemiol Biomarkers Prev 4: 497–503.

    CAS  PubMed  Google Scholar 

  • Luo, Y., Yoshizawa, T. & Katayama, T. (1990). Comparative study on the natural occurrence of fusarium mycotoxins (trichothecenes and zearalenone) in corn and wheat from high- and low-risk areas for human esophageal cancer in China. Appl Environ Microbiol 56: 3723–3726.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMichael-Phillips, D. F., Harding, C., Morton, M., Roberts, S. A., Howell, A., Potten, C. S. & Bundred, N. J. (1998). Effect of soy-protein supplementation on epithelial proliferation in the histologically normal human breast. Am J Clin Nutr 68: (suppl), 1431S–1436S.

    Article  CAS  Google Scholar 

  • Martin, P. M., Horwitz, K. B., Ryan, D. S. & McGuire, W. (1978). Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 103: 1860–1867.

    Article  CAS  Google Scholar 

  • Messina, M., Persky, V., Setchell, K. D. R. & Barnes, S. (1994). Soy intake and breast cancer: a review of the in vitro and in vivo data. Nutr Cancer 21: 113–131.

    Article  CAS  Google Scholar 

  • Michels, K. B., Trichopoulos, D., Robins, J. M., Rosner, B. A., Manson, J. E., Hunter, D., Colditz, G. A., Hankinson, S. E., Speizer, F. E. & Willett, W. C. (1996). Birth weight as a risk factor for breast cancer. Lancet 348: 1542–1546.

    Article  CAS  Google Scholar 

  • Murrill, W. B., Brown, N. M., Zhang, J. X., Manzolillo, P. A., Barnes, S. & Lamartiniere, C. A. (1996). Prepubertal genistein exposure suppresses mammary cancer and enhances gland differentiation in rats. Carcinogenesis 17: 1451–1457.

    Article  CAS  Google Scholar 

  • Nagasawa, H., Yanai, R., Shonodo, M., Nakamura, T. & Tanabe, Y. (1974). Effect of neonatally administered estrogen and prolactin on normal and neoplastic mammary growth and serum estradiol-17 level in rats. Cancer Res 34: 2643–2646.

    CAS  PubMed  Google Scholar 

  • Nelson, J., Clarke, R., Dickson, G. R., Van Den Berg, H. W. & Murphy, R. F. (1986). The effects of Mg2+ ions or EDTA on nuclear integrity and apparent subcellular distribution of unoccupied oestrogen receptors in breast cancer cells. J Steroid Biochem 25: 619–626.

    Article  CAS  Google Scholar 

  • Nomura, A., Henderson, B. E. & Lee, J. (1978). Breast cancer and diet among the Japanese in Hawaii. Am J Clin Nutr 31: 2020–2025.

    Article  CAS  Google Scholar 

  • Petrakis, N. L., Barnes, S., King, E. B., Lowenstein, J., Wiencke, J., Lee, M. M., Miike, R., Kirk, M. & Coward, L. (1996). Stimulatory influence of soy protein isolate on breast secretion in pre- and postmenopausal women. Cancer Epidemiol Biomark Prev 5: 785–794.

    CAS  Google Scholar 

  • Ralston, A. T. (1978). Effect of zearalanol on weaning weight of male calves. J Anim Sci 47: 1203–1206.

    Article  CAS  Google Scholar 

  • Russo, I. H., Medado, J. & Russo, J. (1994). Endocrine influences on the mammary gland. In Integument and Mammary Glands. Eds TC Jones, U Mohr & RD Hunt. Berlin: Springer-Verlag. pp. 252–266.

  • Russo, J. & Russo, I. H. (1987). Biological and molecular bases of mammary carcinogenesis. Lab Invest 57: 112–137.

    CAS  PubMed  Google Scholar 

  • Sanderson, M., Williams, M., Malone, K. E., Stanford, J. L., Emanuel, I., White, E. & Daling, J. R. (1996). Perinatal factors and risk of breast cancer. Epidemiology 7: 34–37.

    Article  CAS  Google Scholar 

  • Santell, R. C., Chang, Y. C., Nair, M. G. & Helferich, W. G. (1997). Dietary genistein exerts estrogeneic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats. J Nutr 127: 263–269.

    Article  CAS  Google Scholar 

  • Schoental, R. (1974). Role of podophyllotoxin in the bedding and dietary zearalenone on incidence of ‘spontaneous’ tumors in laboratory animals. Cancer Res 34: 2419

    CAS  PubMed  Google Scholar 

  • Schoental, R. (1985). Trichothecenes, Zearalenone, and other carcinogenic metabolites of fusarium and related microfungi. Adv Cancer Res 45: 217–290.

    Article  CAS  Google Scholar 

  • Seow, A., Shi, C-Y, Franke, A., Hankin, J. H., Lee, H. P. & Yu, M. C. (1998). Isoflavoid levels in spot urine are associated with frequency of dietary soy intake in a population-based sample of middle-aged and older Chinese in Singapore. Cancer Epidemiol Biomarkers Prev 7: 135–140.

    CAS  PubMed  Google Scholar 

  • Setchell, K. D. R., Borriello, S. P., Hulme, P., Kirk, D. N. & Axelson, M. (1984). Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr 40: 569–578.

    Article  CAS  Google Scholar 

  • Snedecor, G. W. (1988). Statistical Methods, 8th Edn. Iowa State University Press: Ames, Iowa

  • Thordarson, G., Jin, E., Guzman, R. C., Swanson, S. M., Nandi, S. & Talamantes, F. (1995). Refractoriness to mammary tumorigenesis in parous rats: is it caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis 16: 2847–2853.

    Article  CAS  Google Scholar 

  • Verhoeven, G., Vandoren, G., Heyns, W., Kuhn, E. R., Janssens, J. P., Teuwen, D., Goddeeris, E., Lesaffre, E. & DeMoor, P. (1982). Incidence, growth and estradiol-receptor levels of 7,12-dimethylbenz(alpha)antracene-induced mammary tumours in rats: effects of neonatal sex steroids and oestradiol implants. J Endocrinol 95: 357–368.

    Article  CAS  Google Scholar 

  • Wang, T. T., Sathyamoorthy, N. & Phang, J. M. (1996). Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 17: 271–275.

    Article  Google Scholar 

  • Wiggins, J. P., Rothenbacher, H., Wilson, L. L., Martin, R. J., Wangness, P. J. & Ziegler, J. H. (1979). Growth and endocrine responses of lambs to zearanol implants: effects of preimplant growth rate and breed of sire. J Anim Sci 49: 291–297.

    Article  CAS  Google Scholar 

  • Winstanley, J., Cooke, T., George, W. D., Murray, G., Holt, S., Croton, R., Griffiths, K. & Nicholson, R. (1991). The long term prognostic significance of oestrogen receptor analysis in early carcinoma of the breast. Br J Cancer 64: 99–101.

    Article  CAS  Google Scholar 

  • Witte, J. S., Ursin, G., Siemiatycki, J., Thompson, W. D., Paganini-Hill, A. & Haile, R. W. (1997). Diet and premenopausal bilateral breast cancer: A case-control study. Breast Cancer Res Treat 42: 243–251.

    Article  CAS  Google Scholar 

  • Wu, A. H., Ziegler, R. G., Horn-Ross, P. L., Nomura, A. M. Y., West, D. W., Kolonel, L. N., Rosenthal, J. F., Hoover, R. N. & Pike, M. C. (1996). Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol Biomarkers Prev 5: 901–906.

    CAS  PubMed  Google Scholar 

  • Wu, A. H., Ziegler, R. G., Nomura, A. M. Y., West, D. W., Kolonel, L. N., Horn-Ross, P. L., Hoover, R. N. & Pike, M. C. (1998). Soy intake and risk of breast cancer in Asians and Asian-Americans. Am J Clin Nutr 68: (Suppl), 1437S–1443S.

    Article  CAS  Google Scholar 

  • Yuan, J. M., Wang, Q. S., Ross, R. K., Henderson, B. E. & Yu, M. C. (1995). Diet and breast cancer in Shanghai and Tianjin, China. Br J Cancer 71: 1353–1358.

    Article  CAS  Google Scholar 

  • Zava, D. T. & Duwe, G. (1997). Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr Cancer 27: 31–40.

    Article  CAS  Google Scholar 

  • Zheng, W., Dai, Q., Cluster, L. J., Shu, X. O., Wen, W. Q., Jin, F. & Franke, A. A. (1999). Urinary excretion of isoflavonoids and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 8: 35–40

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Lombardi Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Washington, 20007, DC, USA

    L Hilakivi-Clarke, I Onojafe, M Raygada, E Cho, T Skaar & R Clarke

  2. Department of Psychiatry, Georgetown University, 3970 Reservoir Rd NW, Washington, 20007, DC, USA

    L Hilakivi-Clarke & M Raygada

  3. Department of Physiology, Georgetown University, 3970 Reservoir Rd NW, Washington, 20007, DC, USA

    E Cho, T Skaar & R Clarke

  4. Breast Cancer Research Laboratories, Fox Chase Cancer Center, Philadelphia, 19111, PA, USA

    I Russo

Authors
  1. L Hilakivi-Clarke
    View author publications

    Search author on:PubMed Google Scholar

  2. I Onojafe
    View author publications

    Search author on:PubMed Google Scholar

  3. M Raygada
    View author publications

    Search author on:PubMed Google Scholar

  4. E Cho
    View author publications

    Search author on:PubMed Google Scholar

  5. T Skaar
    View author publications

    Search author on:PubMed Google Scholar

  6. I Russo
    View author publications

    Search author on:PubMed Google Scholar

  7. R Clarke
    View author publications

    Search author on:PubMed Google Scholar

Additional information

This work was supported by grants from the American Cancer Society (CN-80420), and the Lombardi Cancer Center Shared Animal Resource Facility, U.S. Public Health Service Grant 2P30-CA51008.

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Hilakivi-Clarke, L., Onojafe, I., Raygada, M. et al. Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br J Cancer 80, 1682–1688 (1999). https://doi.org/10.1038/sj.bjc.6690584

Download citation

  • Received: 06 April 1998

  • Revised: 16 February 1999

  • Accepted: 17 February 1999

  • Published: 09 July 1999

  • Issue date: 01 August 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690584

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • genistein
  • zearalenone
  • prepuberty
  • mammary tumorigenesis

This article is cited by

  • Effects of isoflavones on breast tissue and the thyroid hormone system in humans: a comprehensive safety evaluation

    • S. Hüser
    • S. Guth
    • S. E. Kulling

    Archives of Toxicology (2018)

  • High levels of dietary soy decrease mammary tumor latency and increase incidence in MTB-IGFIR transgenic mice

    • Katrina L Watson
    • Leanne Stalker
    • Roger A Moorehead

    BMC Cancer (2015)

  • Genetic and Environmental Effects on Stem Cells and Breast Cancer

    • Anthony Popkie
    • Madhuri Kakarala
    • Carrie Graveel

    Current Pathobiology Reports (2014)

  • Endocrine Disruptors and the Breast: Early Life Effects and Later Life Disease

    • Madisa B. Macon
    • Suzanne E. Fenton

    Journal of Mammary Gland Biology and Neoplasia (2013)

  • The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    • Barbara Bobrowska-Korczak
    • Dorota Skrajnowska
    • Andrzej Tokarz

    Journal of Biomedical Science (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited