Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 09 July 1999

Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis

  • E K Rofstad1 &
  • T Danielsen1 

British Journal of Cancer volume 80, pages 1697–1707 (1999)Cite this article

  • 1273 Accesses

  • 110 Citations

  • 3 Altmetric

  • Metrics details

This article has been updated

Summary

Tumour cells exposed to hypoxia have been shown to up-regulate the expression of vascular endothelial growth factor (VEGF). The purpose of the present work was to investigate whether hypoxia-induced VEGF up-regulation can result in increased metastatic efficiency of human melanoma cells. Two melanoma lines, one showing high (A-07) and the other showing low (D-12) VEGF secretion under aerobic conditions, were included in the study. Cell cultures were exposed to hypoxia (oxygen concentrations < 10 ppm) in vitro and metastatic efficiency, i.e. lung colonization efficiency, as well as transplantability and angiogenic potential were assessed in BALB/c-nu/nu mice. Both cell lines showed significantly increased VEGF secretion under hypoxic conditions as measured by enzyme-linked immunosorbent assay. The D-12 cells showed increased metastatic efficiency, transplantability and angiogenic potential following exposure to hypoxia. The metastatic efficiency increased with the duration of the hypoxia treatment and decreased with the time after reoxygenation. The A-07 cells on the other hand showed unchanged metastatic efficiency, transplantability and angiogenic potential following exposure to hypoxia. Both cell lines showed significantly decreased metastatic efficiency and angiogenic potential in mice treated with neutralizing antibody against VEGF. These results suggest that (a) VEGF is a limiting factor for the rate of angiogenesis in low but not in high VEGF-expressing melanomas under normoxic conditions and (b) transient hypoxia might promote the development of metastases in low VEGF-expressing melanomas by upregulating the expression of VEGF and hence enhancing the angiogenic potential of the tumour cells.

Similar content being viewed by others

REDD1 is a determinant of low-dose metronomic doxorubicin-elicited endothelial cell dysfunction through downregulation of VEGFR-2/3 expression

Article Open access 25 October 2021

Differential effects of hypoxia on motility using various in vitro models of lung adenocarcinoma

Article Open access 03 September 2024

Therapy-induced modulation of tumor vasculature and oxygenation in a murine glioblastoma model quantified by deep learning-based feature extraction

Article Open access 23 January 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Asano, M., Yukita, A., Matsumoto, T., Kondo, S. & Suzuki, H. (1995). Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor121 . Cancer Res 55: 5296–5301.

    CAS  PubMed  Google Scholar 

  • Bochner, B. H., Cote, R. J., Weidner, N., Groshen, S., Chen, S. C., Skinner, D. G. & Nichols, P. W. (1995). Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis. J Natl Cancer Inst 87: 1603–1612.

    Article  CAS  PubMed  Google Scholar 

  • Brizel, D. B., Scully, S. P., Harrelson, J. M., Layfield, L. J., Bean, J. M., Prosnitz, L. R. & Dewhirst, M. W. (1996). Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56: 941–943.

    CAS  PubMed  Google Scholar 

  • Brown, J. M. & Giaccia, A. J. (1994). Tumour hypoxia: the picture has changed in the 1990s. Int J Radiat Biol 65: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Claffey, K. P., Brown, L. F., del Aguila, L. F., Tognazzi, K., Yeo, K-T, Manseau, E. J. & Dvorak, H. F. (1996). Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 56: 172–181.

    CAS  PubMed  Google Scholar 

  • Coleman, C. N. (1988). Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J Natl Cancer Inst 80: 310–317.

    Article  CAS  PubMed  Google Scholar 

  • Dachs, G. U. & Stratford, I. J. (1996). The molecular response of mammalian cells to hypoxia and the potential for exploitation in cancer therapy. Br J Cancer 74: s126–s132.

    Google Scholar 

  • Denekamp, J. & Hobson, B. (1982). Endothelial cell proliferation in experimental tumours. Br J Cancer 46: 711–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak, H. F. (1986). Tumours: wounds that do not heal. Similarity between tumor stroma generation and wound healing. New Engl J Med 315: 1650–1658.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak, H. F., Orenstein, N. S., Carvalho, A. C., Churchill, W. H., Dvorak, A. M., Galli, S. J., Feder, J., Bitzer, A. M., Rypysc, J. & Giovinco, P. (1979). Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol 122: 166–174.

    CAS  PubMed  Google Scholar 

  • Feng, D., Nagy, J. A., Hipp, J., Dvorak, H. F. & Dvorak, A. M. (1996). Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J Exp Med 183: 1981–1986.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I. J. & Ellis, L. M. (1994). The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79: 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent?. J Natl Cancer Inst 82: 4–6.

    Article  CAS  PubMed  Google Scholar 

  • Foulds, L. (1975). Neoplastic Development: Academic Press: New York

  • Gasparini, G., Weidner, N., Maluta, S., Pozza, F., Boracchi, P., Mezzetti, M., Testolin, A. & Bevilacqua, P. (1993). Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinoma. Int J Cancer 55: 739–744.

    Article  CAS  PubMed  Google Scholar 

  • Guidi, A. J., Abu-Jawdeh, G., Berse, B., Jackman, R. W., Tognazzi, K., Dvorak, H. F. & Brown, L. F. (1995). Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 87: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  • Herlyn, M. (1990). Human melanoma: development and progression. Cancer Metastasis Rev 9: 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Hill, R. P. (1990). Tumor progression: potential role of unstable genomic changes. Cancer Metastasis Rev 9: 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Hlatky, L., Tsionou, C., Hahnfeldt, P. & Coleman, C. N. (1994). Mammary fibroblasts may influence breast tumor angiogenesis via hypoxia-induced vascular endothelial growth factor up-regulation and protein expression. Cancer Res 54: 6083–6086.

    CAS  PubMed  Google Scholar 

  • Horsman, M. R. (1995). Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. Acta Oncol 34: 571–587.

    Article  CAS  PubMed  Google Scholar 

  • Höckel, M., Schlenger, K., Aral, B., Mitze, M., Schäffer, U. & Vaupel, P. (1996). Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56: 4509–4515.

    PubMed  Google Scholar 

  • Jang, A. & Hill, R. P. (1997). An examination of the effects of hypoxia, acidosis, and glucose starvation on the expression of metastasis-associated genes in murine tumor cells. Clin Exp Metastasis 15: 469–483.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S. & Ferrara, N. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  • Kreisle, R. A. & Ershler, W. B. (1988). Investigation of tumor angiogenesis in an id mouse model: role of host–tumor interactions. J Natl Cancer Inst 80: 849–854.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Clevage of structural proteins during the assembly of the head of bacterio-phage T4. Nature 277: 680–685.

    Article  Google Scholar 

  • Macchiarini, P., Fontanini, G., Hardin, M. J., Squartini, F. & Angeletti, C. A. (1992). Relation of neovasculature to metastasis of non-small-cell lung cancer. Lancet 340: 145–146.

    Article  CAS  PubMed  Google Scholar 

  • Mandriota, S. J., Seghezzi, G., Vassalli, J. D., Ferrara, N., Wasi, S., Mazzieri, R., Mignatti, P. & Pepper, M. S. (1995). Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 270: 9707–9716.

    Article  Google Scholar 

  • Mattern, J., Koomägi, R. & Volm, M. (1996). Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. Br J Cancer 73: 931–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnyk, O., Shuman, M. A. & Kim, K. J. (1996). Vascular endothelial growth factor promotes tumor dissemination by a mechanism distinct from its effect on primary tumor growth. Cancer Res 56: 921–924.

    CAS  PubMed  Google Scholar 

  • Nagy, J. A., Masse, E. M., Herzberg, K. T., Meyers, M. S., Yeo, K. T., Yeo, T. K., Sioussat, T. M. & Dvorak, H. F. (1995). Pathogenesis of ascites tumor growth. Vascular permeability factor, vascular hyperpermeability and ascites fluid accumulation. Cancer Res 55: 360–368.

    CAS  PubMed  Google Scholar 

  • Pötgens, A. J. G., van Altena, M. C., Lubsen, N. H., Ruiter, D. J. & de Waal, R. M. W. (1996). Analysis of the tumor vasculature and metastatic behavior of xenografts of human melanoma cell lines transfected with vascular permeability factor. Am J Pathol 148: 1203–1217.

    PubMed  PubMed Central  Google Scholar 

  • Roberts, W. G. & Palade, G. E. (1995). Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108: 2369–2379.

    CAS  PubMed  Google Scholar 

  • Rofstad, E. K. (1992). Retention of cellular radiation sensitivity in cell and xenograft lines established from human melanoma surgical specimens. Cancer Res 52: 1764–1769.

    CAS  PubMed  Google Scholar 

  • Rofstad, E. K. (1994). Orthotopic human melanoma xenograft model systems for studies of tumour angiogenesis, pathophysiology, treatment sensitivity and metastatic pattern. Br J Cancer 70: 804–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rofstad, E. K. (1995). Metastatic behavior of human tumors in congenitally athymic nude mice: intrinsic properties of the tumor cells and host immune reactivity. Int J Cancer 63: 744–749.

    Article  CAS  PubMed  Google Scholar 

  • Saleh, M., Stacker, S. A. & Wilks, A. F. (1996). Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 56: 393–401.

    CAS  PubMed  Google Scholar 

  • Sanna, K. & Rofstad, E. K. (1994). Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer 58: 258–262.

    Article  CAS  PubMed  Google Scholar 

  • Schwickert, G., Walenta, S., Sundfør, K., Rofstad, E. K. & Mueller-Klieser, W. (1995). Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55: 4757–4759.

    CAS  PubMed  Google Scholar 

  • Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S. & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985.

    Article  CAS  PubMed  Google Scholar 

  • Shweiki, D., Itin, A., Soffer, D. & Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.

    Article  CAS  PubMed  Google Scholar 

  • Spiro, I. J., Rice, G. C., Durand, R. E., Stickler, R. & Ling, C. C. (1984). Cell killing, radiosensitization, and cell cycle redistribution induced by chronic hypoxia. Int J Radiat Oncol Biol Phys 10: 1275–1280.

    Article  CAS  PubMed  Google Scholar 

  • Sundfør, K., Lyng, H. & Rofstad, E. K. (1998). Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer 78: 822–827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki, N., Frapart, M., Grdina, J. D., Meistrich, M. L. & Withers, R. (1977). Cell cycle dependency of metastatic lung colony formation. Cancer Res 37: 3690–3693.

    CAS  PubMed  Google Scholar 

  • Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R. & Ellis, L. M. (1995). Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55: 3964–3968.

    CAS  PubMed  Google Scholar 

  • Toi, M., Inada, K., Hoshina, S., Suzuki, H., Kondo, S. & Tominaga, T. (1995). Vascular endothelial growth factor and platelet-derived endothelial cell growth factor are frequently co-expressed in highly vascularized human breast cancer. Clin Cancer Res 1: 961–964.

    CAS  PubMed  Google Scholar 

  • Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from poly-acrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unemori, E. N., Ferrara, N., Bauer, E. A. & Amento, E. P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol 153: 557–562.

    Article  CAS  PubMed  Google Scholar 

  • Vaupel, P., Kallinowski, F. & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449–6465.

    CAS  PubMed  Google Scholar 

  • Walenta, S., Salameh, A., Lyng, H., Evensen, J. F., Mitze, M., Rofstad, E. K. & Mueller-Klieser, W. (1997). Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 150: 409–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner, N. (1993). Tumor angiogenesis: review of current applications in tumor prognostication. Semin Diagn Pathol 10: 302–313.

    CAS  PubMed  Google Scholar 

  • Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. (1991). Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med 324: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Yoneda, J., Kuniyasu, H., Crispens, M. A., Price, J. E., Bucana, C. D. & Fidler, I. J. (1998). Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 90: 447–454.

    Article  CAS  PubMed  Google Scholar 

  • Young, S. D., Marshall, R. S. & Hill, R. P. (1988). Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85: 9533–9537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagzag, D. (1995). Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol 146: 293–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H-T, Craft, P., Scott, P. A. E., Ziche, M., Weich, H. A., Harris, A. L. & Bicknell, R. (1995). Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J Natl Cancer Inst 87: 213–219.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biophysics, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, 0310, Norway

    E K Rofstad & T Danielsen

Authors
  1. E K Rofstad
    View author publications

    Search author on:PubMed Google Scholar

  2. T Danielsen
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Rofstad, E., Danielsen, T. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer 80, 1697–1707 (1999). https://doi.org/10.1038/sj.bjc.6690586

Download citation

  • Received: 15 October 1998

  • Revised: 05 January 1999

  • Accepted: 28 January 1999

  • Published: 09 July 1999

  • Issue date: 01 August 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690586

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • angiogenesis
  • hypoxia
  • melanoma
  • metastasis
  • VEGF

This article is cited by

  • A microfabricated platform for establishing oxygen gradients in 3-D constructs

    • Shawn C. Oppegard
    • David T. Eddington

    Biomedical Microdevices (2013)

  • Vascular density and endothelial cell expression of integrin alpha v beta 3 and E-selectin in murine tumours

    • Johanne Seguin
    • Céline Nicolazzi
    • Guy G. Chabot

    Tumor Biology (2012)

  • Antimetastatic activity of MONCPT in preclinical melanoma mice model

    • Xiao-Chun Yang
    • Chong-Xing Tu
    • Bo Yang

    Investigational New Drugs (2010)

  • The tumor microenvironment and metastatic disease

    • Sarah Jane Lunt
    • Naz Chaudary
    • Richard P. Hill

    Clinical & Experimental Metastasis (2009)

  • Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours

    • Sarah Jane Lunt
    • Tuula MK Kalliomaki
    • Richard P Hill

    BMC Cancer (2008)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited