Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
The distinct role of CD4+ and CD8+ T-cells during the anti-tumour effects of targeted superantigens
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 27 August 1999

The distinct role of CD4+ and CD8+ T-cells during the anti-tumour effects of targeted superantigens

  • M J Litton1,
  • M Dohlsten3,6,
  • A Rosendahl2,6,
  • L Ohlsson2,
  • M Søgaard2,
  • J Andersson1,4 &
  • …
  • U Andersson1,5 

British Journal of Cancer volume 81, pages 359–366 (1999)Cite this article

  • 1244 Accesses

  • 32 Citations

  • Metrics details

This article has been updated

Summary

To target T-cells to the tumour area we created a recombinant protein of the bacterial superantigen (SAg) Staphylococcal enterotoxin A (SEA) and the Fab-fragment of a tumour-reactive antibody. This antibody-targeted SAg immunotherapy therapy has been shown to be highly efficient, eliminating > 95% of the pulmonary metastasis in mice carrying established melanoma micrometastases. Earlier studies demonstrated that elimination of the C215-expressing B16-melanoma lung metastasis was dependent on interferon (IFN)-γ release and expression of perforin. In the present study, therapeutic effector functions were analysed both locally at the tumour site and systemically in the spleen. In order to elucidate the role of each T-cell subset during Fab–SEA therapy, CD4 knock-out (KO) and CD8 KO mice were used. Tumour size reduction was statistically significant in Fab–SEA-based tumour therapy in both types of T-cell-deficient mice compared to wild-type mice. CD4 KO mice displayed a drastic reduction in the number of tumour-infiltrating macrophages and CD8+ T-cells. Therapy-induced accumulation of perforin-containing cells at the tumour site was significantly impaired in CD8 KO mice, and marginally in CD4 KO mice. Moreover, CD4 KO mice failed to produce substantial amounts of the tumour suppressive cytokine IFN-γ. This is in sharp contrast to normal mice where a massive local release was recorded. CD8 KO mice displayed a spontaneous production of interleukin (IL)-4 and IL-10 locally in the tumour. Neither normal nor CD4 KO mice produced detectable levels of these Th-2-associated cytokines. The high level of IL-10 was demonstrated to inhibit Fab–SEA tumour therapy, since the therapeutic efficacy was significantly higher in IL-10 KO mice. These results illustrate the importance of a finely tuned cellular collaboration to regulate the various phases of an efficient anti-tumour immune response.

Similar content being viewed by others

Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer

Article Open access 01 April 2022

Single-cell RNA sequencing reveals myeloid and T cell co-stimulation mediated by IL-7 anti-cancer immunotherapy

Article Open access 29 February 2024

Comprehensive immunophenotyping reveals distinct tumor microenvironment alterations in anti-PD-1 sensitive and resistant syngeneic mouse model

Article Open access 10 March 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Andersson, J, Nagy, S, Bjork, L, Abrams, J, Holm, S & Andersson, U (1992). Bacterial toxin-induced cytokine production studied at the single-cell level. Immunol Rev 127,

    Article  CAS  Google Scholar 

  • Aruga, A, Aruga, E, Tanigawa, K, Bishop, DK, Sondak, VK & Chang, AE (1997). Type 1 versus type 2 cytokine release by Vbeta T cell subpopulations determines in vivo antitumor reactivity: IL-10 mediates a suppressive role. J Immunol 159: 664–673.

    CAS  PubMed  Google Scholar 

  • Battegay, M, Moskophidis, D, Rahemtulla, A, Hengartner, H, Mak, TW & Zinkernagel, RM (1994). Enhanced establishment of a virus carrier state in adult CD4+ T-cell-deficient mice. J Virol 68: 4700–4704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coppola, MA & Blackman, MA (1997). Bacterial superantigens reactivate antigen-specific CD8+ memory T cells. Int. Immunol 9: 1393–1403.

    Article  CAS  Google Scholar 

  • de Waal Malefyt, R, Abrams, J, Bennett, B, Figdor, CG & de Vries, JE (1991a). Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174: 1209–1220.

    Article  CAS  Google Scholar 

  • de Waal Malefyt, R, Haanen, J, Spits, H, Roncarolo, MG, te Velde, A, Figdor, C, Johnson, K, Kastelein, R, Yssel, H & de Vries, JE (1991b). Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174: 915–924.

    Article  CAS  Google Scholar 

  • Dhein, J, Walczak, H, Baumler, C, Debatin, KM & Krammer, PH (1995). Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373: 438–441.

    Article  CAS  Google Scholar 

  • Ding, L, Linsley, PS, Huang, LY, Germain, RN & Shevach, EM (1993). IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol 151: 1224–1234.

    CAS  PubMed  Google Scholar 

  • Dohlsten, M, Lando, PA, Hedlund, G, Trowsdale, J & Kalland, T (1990). Targeting of human cytotoxic T lymphocytes to MHC class II-expressing cells by staphylococcal enterotoxins. Immunology 71: 96–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dohlsten, M, Sundstedt, A, Bjorklund, M, Hedlund, G & Kalland, T (1993). Superantigen-induced cytokines suppress growth of human colon-carcinoma cells. Int J Cancer 54: 482–488.

    Article  CAS  Google Scholar 

  • Dohlsten, M, Abrahmsen, L, Bjork, P, Lando, PA, Hedlund, G, Forsberg, G, Brodin, T, Gascoigne, NR, Forberg, C & Lind, PETAL (1994). Monoclonal antibody-superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy. Proc Natl Acad Sci USA 91: 8945–8949.

    Article  CAS  Google Scholar 

  • Dohlsten, M, Hansson, J, Ohlsson, L, Litton, M & Kalland, T (1995a). Antibody-targeted superantigens are potent inducers of tumor-infiltrating T lymphocytes in vivo. Proc Natl Acad Sci USA 92: 9791–9795.

    Article  CAS  Google Scholar 

  • Dohlsten, M, Lando, PA, Bjork, P, Abrahmsen, L, Ohlsson, L, Lind, P & Kalland, T (1995b). Immunotherapy of human colon cancer by antibody-targeted superantigens. Cancer Immunol Immunother 41: 162–168.

    Article  CAS  Google Scholar 

  • Fiorentino, DF, Zlotnik, A, Vieira, P, Mosmann, TR, Howard, M, Moore, KW & O’Garra, A (1991). IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146: 3444–3451.

    CAS  PubMed  Google Scholar 

  • Fitzpatrick, L, Makrigiannis, AP, Kaiser, M & Hoskin, D (1996). Anti-CD3-activated killer T cells: interferon-gamma and interleukin-10 cross-regulate granzyme B expression and the induction of major histocompatibity complex-unrestricted cytotoxicity. J Interferon Cytokine Res 16: 537–546.

    Article  CAS  Google Scholar 

  • Fung Leung, WP, Schilham, MW, Rahemtulla, A, Kundig, TM, Vollenweider, M, Potter, J, van Ewijk, W & Mak, TW (1991). CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65: 443–449.

    Article  CAS  Google Scholar 

  • Giovarelli, M, Musiani, P, Modesti, A, Dellabona, P, Casorati, G, Allione, A, Consalvo, M, Cavallo, F, di Pierro, F & de Giovanni, CETAL (1995). Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J Immunol 155: 3112–3123.

    CAS  PubMed  Google Scholar 

  • Groux, H, Bigler, M, de Vries, JE & Roncarolo, MG (1996). Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 184: 19–29.

    Article  CAS  Google Scholar 

  • Groux, H, Bigler, M, de Vries, JE & Roncarolo, MG (1998). Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol 160: 3188–3193.

    CAS  PubMed  Google Scholar 

  • Herrmann, T, Maryanski, JL, Romero, P, Fleischer, B & MacDonald, HR (1990). Activation of MHC class I-restricted CD8+ CTL by microbial T cell mitogens. Dependence upon MHC class II expression of the target cells and V beta usage of the responder T cells. J Immunol 144: 1181–1186.

    CAS  PubMed  Google Scholar 

  • Hom, SS, Topalian, SL, Simonis, T, Mancini, M & Rosenberg, SA (1991). Common expression of melanoma tumor-associated antigens recognized by human tumor infiltrating lymphocytes: analysis by human lymphocyte antigen restriction. J Immunother 10: 153–164.

    CAS  PubMed  Google Scholar 

  • Janeway, CA Jr, Yagi, J, Conrad, PJ, Katz, ME, Jones, B, Vroegop, S & Buxser, S (1989). T-cell responses to Mls and to bacterial proteins that mimic its behavior. Immunol Rev 107,

    Article  CAS  Google Scholar 

  • Kagi, D, Ledermann, B, Burki, K, Hengartner, H & Zinkernagel, RM (1994). CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur J Immunol 24: 3068–3072.

    Article  CAS  Google Scholar 

  • Kahn, M, Sugawara, H, Mcgowan, P, Okuno, K, Nagoya, S, Hellstrom, KE, Hellstrom, I & Greenberg, P (1991). CD4+ T cell clones specific for the human p97 melanoma-associated antigen can eradicate pulmonary metastases from a murine tumor expressing the p97 antigen. J Immunol 146: 3235–3241.

    CAS  PubMed  Google Scholar 

  • Kern, DE, Klarnet, JP, Jensen, MC & Greenberg, PD (1986). Requirement for recognition of class II molecules and processed tumor antigen for optimal generation of syngeneic tumor-specific class I-restricted CTL. J Immunol 136: 4303–4310.

    CAS  PubMed  Google Scholar 

  • Klarnet, JP, Kern, DE, Okuno, K, Holt, C, Lilly, F & Greenberg, PD (1989). FBL-reactive CD8+ cytotoxic and CD4+ helper T lymphocytes recognize distinct Friend murine leukemia virus-encoded antigens. J Exp Med 169: 457–467.

    Article  CAS  Google Scholar 

  • Krieger, NR, Yin, DP & Garrison Fathman, C (1996). CD4+ but not CD8+ cells are essential for allorejection. J Exp Med 184: 2013–2018.

    Article  CAS  Google Scholar 

  • Langford, MP, Stanton, GJ & Johnson, HM (1978). Biological effects of staphylococcal enterotoxin A on human peripheral lymphocytes. Infect Immun 22: 62–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, WT & Vitetta, ES (1992). Memory T cells are anergic to superantigen staphylococcal enterotoxin B. J Exp Med 176: 575–579.

    Article  CAS  Google Scholar 

  • Litton, MJ, Sander, B, Murphy, E, O’Garra, A & Abrams, JS (1994). Early expression of cytokines in lymph nodes after treatment in vivo with Staphylococcus enterotoxin B. J Immunol Methods 175: 47–58.

    Article  CAS  Google Scholar 

  • Litton, MJ, Dohlsten, M, Lando, PA, Kalland, T, Ohlsson, L, Andersson, J & Andersson, U (1996). Antibody-targeted superantigen therapy induces tumor-infiltrating lymphocytes, excessive cytokine production, and apoptosis in human colon carcinoma. Eur J Immunol 26: 1–9.

    Article  CAS  Google Scholar 

  • Litton, MJ, Dohlsten, M, Hansson, J, Rosendahl, A, Ohlsson, L, Kalland, T, Andersson, J & Andersson, U (1997). Tumor therapy with an antibody-targeted superantigen generates a dichotomy between local and systemic immune responses. Am J Pathol 150: 1607–1618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann, TR & Coffman, RL (1989). TH-1 and TH-2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 1967–1990.

    Article  Google Scholar 

  • Oswald, IP, Gazzinelli, RT, Sher, A & James, SL (1992). IL-10 synergizes with IL-4 and transforming growth factor-β to inhibit macrophage cytotoxic activity. J Immunol 148: 3578–3582.

    CAS  PubMed  Google Scholar 

  • Pace, JL & Russell, SW (1981). Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol 126: 1863–1867.

    CAS  PubMed  Google Scholar 

  • Rahemtulla, A, Fung Leung, WP, Schilham, MW, Kundig, TM, Sambhara, SR, Narendran, A, Arabian, A, Wakeham, A, Paige, CJ & Zinkernagel, RM et al (1991). Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353: 180–184.

    Article  CAS  Google Scholar 

  • Rosenberg, SA, Lotze, MT, Muul, LM, Leitman, S, Chang, AE, Ettinghausen, SE, Matory, YL, Skibber, JM, Shiloni, E & Vetto, JT et al (1985). Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313: 1485–1492.

    Article  CAS  Google Scholar 

  • Rosendahl, A, Hansson, J, Sundstedt, A, Kalland, T & Dohlsten, M (1996). Immune response during tumor therapy with antibody-superantigen fusion proteins. Int J Cancer 68: 109–113.

    Article  CAS  Google Scholar 

  • Rosendahl, A, Kristensson, K, Hansson, J, Ohlsson, L, Kalland, T & Dohlsten, M (1998a). Repeated treatment with antibody-targeted superantigens strongly inhibits tumor growth. Int J Cancer 76: 274–283.

    Article  CAS  Google Scholar 

  • Rosendahl, A, Kristensson, K, Hansson, J, Riesbeck, K, Kalland, T & Dohlsten, M (1998b). Perforin and IFN-gamma are involved in the antitumor effects of antibody-targeted superantigens. J Immunol 160: 5309–5313.

    CAS  PubMed  Google Scholar 

  • Scherer, MT, Ignatowicz, L, Winslow, GM, Kappler, JW & Marrack, P (1993). Superantigens: bacterial and viral proteins that manipulate the immune system. Annu Rev Cell Biol 9,

    Article  CAS  Google Scholar 

  • Schmidt Wolf, IG, Dejbakhsh Jones, S, Ginzton, N, Greenberg, P & Strober, S (1992). T-cell subsets and suppressor cells in human bone marrow. Blood 80: 3242–3250.

    CAS  PubMed  Google Scholar 

  • Schreiber, RD (1984). Identification of gamma-interferon as a murine macrophage-activating factor for tumor cytotoxicity. Contemp Top Immunobiol 13,

  • Sher, A, Gazzinelli, RT, Oswald, IP, Clerici, M, Kullberg, M, Pearce, EJ, Berzofsky, JA, Mosmann, TR, James, SL & Morse, HC, III (1992). Role of T-cell derived cytokines in the downregulation of immune responses in parasitic and retroviral infection. Immunol Rev 127: 183–204.

    Article  CAS  Google Scholar 

  • Sundstedt, A, Hoiden, I, Rosendahl, A, Kalland, T, van Rooijen, N & Dohlsten, M (1997). Immunoregulatory role of IL-10 during superantigen-induced hyporesponsiveness in vivo. J Immunol 158: 180–186.

    CAS  PubMed  Google Scholar 

  • White, J, Herman, A, Pullen, AM, Kubo, R, Kappler, JW & Marrack, P (1989). The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56: 27–35.

    Article  CAS  Google Scholar 

  • Willems, F, Marchant, A, DelVille, JP, Gerard, C, Delvaux, A, Velu, T, de Boer, M & Goldman, M (1994). Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur J Immunol 24: 1007–1009.

    Article  CAS  Google Scholar 

  • Yoshimoto, T & Paul, WE (1994). CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 179: 1285–1295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Immunology, Wenner-Gren’s Institute, Stockholm University, Stockholm, S-S 91, Sweden

    M J Litton, J Andersson & U Andersson

  2. Active Biotech, PO Box 724, Lund, S-S 07, Sweden

    A Rosendahl, L Ohlsson & M Søgaard

  3. Department of Tumor Immunology, Wallenberg Laboratory, University of Lund, Lund, Sweden

    M Dohlsten

  4. Department of Microbiology, Pathology and Infectious Diseases, Karolinska Institute, Huddinge Hospital, Stockholm, Sweden

    J Andersson

  5. Department of Pediatrics, Karolinska Institute, St Göran’s Children’s Hospital, Stockholm, Sweden

    U Andersson

  6. AstraZeneca, R&D Lund, Lund, S-S 87, Sweden

    M Dohlsten & A Rosendahl

Authors
  1. M J Litton
    View author publications

    Search author on:PubMed Google Scholar

  2. M Dohlsten
    View author publications

    Search author on:PubMed Google Scholar

  3. A Rosendahl
    View author publications

    Search author on:PubMed Google Scholar

  4. L Ohlsson
    View author publications

    Search author on:PubMed Google Scholar

  5. M Søgaard
    View author publications

    Search author on:PubMed Google Scholar

  6. J Andersson
    View author publications

    Search author on:PubMed Google Scholar

  7. U Andersson
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Litton, M., Dohlsten, M., Rosendahl, A. et al. The distinct role of CD4+ and CD8+ T-cells during the anti-tumour effects of targeted superantigens. Br J Cancer 81, 359–366 (1999). https://doi.org/10.1038/sj.bjc.6690701

Download citation

  • Received: 28 October 1998

  • Revised: 16 February 1999

  • Accepted: 17 February 1999

  • Published: 27 August 1999

  • Issue date: 01 September 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690701

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • tumour therapy
  • superantigen
  • cytokines
  • perforin
  • knock out mice
  • T-cells

This article is cited by

  • PBMC activation via the ERK and STAT signaling pathways enhances the anti-tumor activity of Staphylococcal enterotoxin A

    • Xueting Liu
    • Liping Zeng
    • Jianguo Zhang

    Molecular and Cellular Biochemistry (2017)

  • TNF-α produced by SEC2 mutant (SAM-3)-activated human T cells induces apoptosis of HepG2 cells

    • Guojun Zhang
    • Mingkai Xu
    • Chenggang Zhang

    Applied Microbiology and Biotechnology (2016)

  • SEC2-induced superantigen and antitumor activity is regulated through calcineurin

    • Yanli Liu
    • Mingkai Xu
    • Chenggang Zhang

    Applied Microbiology and Biotechnology (2013)

  • A phase II study of a 5T4 oncofoetal antigen tumour-targeted superantigen (ABR-214936) therapy in patients with advanced renal cell carcinoma

    • D M Shaw
    • N B Connolly
    • R E Hawkins

    British Journal of Cancer (2007)

  • Intratumoral IL-18 gene transfer improves therapeutic efficacy of antibody-targeted superantigen in established murine melanoma

    • Q Wang
    • H Yu
    • X Cao

    Gene Therapy (2001)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited