Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Detection of circulating tumour cells in patients with breast or ovarian cancer by molecular cytogenetics
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 12 November 1999

Detection of circulating tumour cells in patients with breast or ovarian cancer by molecular cytogenetics

  • H Engel1,2,
  • C Kleespies1,
  • J Friedrich1,
  • M Breidenbach1,
  • A Kallenborn1,
  • T Schöndorf1,
  • H Kolhagen1 &
  • …
  • P Mallmann1 

British Journal of Cancer volume 81, pages 1165–1173 (1999)Cite this article

  • 1576 Accesses

  • 44 Citations

  • 6 Altmetric

  • Metrics details

This article has been updated

Summary

Detection of micrometastases in patients with solid tumours may aid the establishment of prognosis and development of new therapeutic approaches. This study was designed to investigate the presence and frequency of tumour cells in the peripheral blood (PB) of patients with breast or ovarian cancer by using a combination of magnetic activated cell sorting (MACS) and fluorescence in situ hybridization (FISH). Separated tumour cell and PB-samples from 48 patients (35 breast cancers, 12 ovarian tumours, one uterine sarcoma) were analysed for the presence of numerical aberrations of chromosomes 7, 12, 17 and 17 q11.2–q12. Twenty-five patients had primary disease and 23 had relapsed. The technique allows the detection of one tumour cell in 106 normal cells. Circulating tumour cells were detected in 35/48 cases (17 patients had relapsed and 13 primary carcinoma with lymph node or solid metastases) by the expression of anti-cytokeratin and the presence of numerical chromosomal abnormalities. PB-tumour cells of patients with a primary carcinoma and without solid metastases had a significantly lower percentage of chromosomal aberrations, especially for chromosome 12 (P = 0.035; P = 0.038) compared to those with relapsed disease and solid metastases. Detection and quantification of minimal residual disease may monitor the response to cytotoxic or hormonal therapy and may identify women at risk of relapse.

Similar content being viewed by others

Low-pass whole genome sequencing of circulating tumor cells to evaluate chromosomal instability in triple-negative breast cancer

Article Open access 03 September 2024

Detection of circulating tumour cells before and following adjuvant chemotherapy and long-term prognosis of early breast cancer

Article Open access 10 February 2022

Copy number alterations analysis of primary tumor tissue and circulating tumor cells from patients with early-stage triple negative breast cancer

Article Open access 27 January 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • An, HX, Niederacher, D, Beckmann, MW, Gohring, UJ, Scharl, A, Picard, F, van Roeyen, C, Schnurch, HG & Bender, HG (1995). ERBB2 gene amplification detected by fluorescent differential polymerase chain reaction in paraffin-embedded breast carcinoma tissues. Int J Cancer 64: 291–297.

    Article  CAS  Google Scholar 

  • Berois, N, Varangot, M, Osinaga, E, Babino, A, Caignault, L, Muse, I & Roseto, A (1997). Detection of rare human breast cancer cells. Comparison of an immunomagnetic separation method with immunocytochemistry and RT-PCR. Anticancer Res 17: 2639–2646.

    CAS  PubMed  Google Scholar 

  • Bostick, PJ, Chatterjee, S, Chi, DD, Huynh, KT, Giuliano, AE, Cote, R & Hoon, DS (1998). Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. J Clin Oncol 16: 2632–2640.

    Article  CAS  Google Scholar 

  • Cajulis, RS, Kotliar, S, Haines, GK, Frias-Hidvegi, D & O’Gorman, M (1994). Comparative study of interphase cytogenetics, flow cytometric analysis, and nuclear grade of fine-needle aspirates of breast carcinoma. Diagn Cytopathol 11: 151–158.

    Article  CAS  Google Scholar 

  • Datta, YH, Adams, PT, Drobyski, WR, Ethier, SP, Terry, VH & Roth, MS (1994). Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 12: 475–482.

    Article  CAS  Google Scholar 

  • Deville, P, Theirry, RF, Kievitis, T, Kolluri, R, Hopman, AHN, Willard, HF, Pearson, PL & Cornelisse, CJ (1988). Detection of chromosome aneuploidy in interphase nuclei from human primary breast tumors using chromosome-specific repetitive DNA probes. Cancer Res 48: 5825–5830.

    Google Scholar 

  • Cote, RJ, Rosen, PP, Lesser, ML, Old, LJ & Osborne, MP (1991). Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9: 1749–1756.

    Article  CAS  Google Scholar 

  • Cote, RJ, Beattie, EJ, Chaiwun, B, Shi, SR, Harvey, J, Chen, SC, Sherrod, AE, Groshen, S & Taylor, CR (1995). Detection of occult bone marrow micrometastases in patients with operable lung carcinoma. Ann Surg 4: 415–423.

    Article  Google Scholar 

  • Cote, RJ, Houchens, DP, Hitchcock, CL, Saad, AD, Nines, RG, Greenson, JK, schneebaum, S, Arnold, MW & Martin, EW Jr (1996). Intraoperative detection of occult colon cancer micrometastases using 125 I-radiolabeled monoclonal antibody CC49. Cancer 77: 613–620.

    Article  CAS  Google Scholar 

  • Diel, IJ, Kaufmann, M, Costa, SD, Holle, R, von Minckwitz, G, Solomayer, EF, Kaul, S & Basetert, G (1996). Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88: 1652–1658.

    Article  CAS  Google Scholar 

  • Dutrillaux, B, Gerbault-Seureau, M & Zafrani, B (1990). Characterization of chromosomal anomalies in human breast cancer. A comparison of 30 paraploid cases with few chromosome changes. Cancer Genet Cytogenet 49: 203–217.

    Article  CAS  Google Scholar 

  • Eaton, MC, Hardingham, JE, Kotasek, D & Dobrovik, A (1997). Immunobead RT-PCR: a sensitive detection method for detection of circulating tumor cells. Biotechniques 22: 100–105.

    Article  CAS  Google Scholar 

  • Engel, H, Friedrich, J, Kleespies, C, Kurbacher, CM, Schöndorf, T, Grecu, O, Kolhagen, H & Mallmann, P (1998). Detection of chromosomal aberrations in tumor cells and tumor infiltrating lymphocytes by molecular cytogenetics in patients with gynecological cancer. Cancer Genet Cytogenet 106: 159–165.

    Article  CAS  Google Scholar 

  • Fernandez, JL, Goyanes, V, Lopez-Fernandez, C, Buno, I & Gosalvez, J (1996). Quantification of C-ERB-B2 gene amplification in breast cancer cells using fluorescence in situ hybridization and digital image analysis. Cancer Genet Cytogenet 86: 18–21.

    Article  CAS  Google Scholar 

  • Fiegl, M, Tueni, C, Schenk, T, Jakesz, R, Gnat, M, Reiner, A, Rudas, M, Pirc-Danoewinata, H, Marosi, C & Huber, H (1995). Interphase cytogenetics reveals a high incidence of aneuploidy and intra-tumour heterogeneity in breast cancer. Br J Cancer 72: 51–55.

    Article  CAS  Google Scholar 

  • Franklin, WA, Shpall, EJ, Archer, P, Johnston, CS, Garza-Williams, S, Hami, L, Bitter, MA, Bast, RC & Jones, RB (1996). Immunocytochemical detection of breast cancer cells in marrow and peripheral blood of patients undergoing high dose chemotherapy with autologous stem cell support. Breast Cancer Res Treat 41: 1–13.

    Article  CAS  Google Scholar 

  • Geleick, D, Müller, H, Matter, A, Torhorst, J & Regenass, U (1990). Cytogenetics of breast cancer. Cancer Genet Cytogenet 46: 217–229.

    Article  CAS  Google Scholar 

  • Harbeck, N, Schwarze, S, Schüren, E, Yamamoto, N, Moniwa, N, Schmitt, M, Dettmar, P, Nathrath, W, Jänicke, F, Höfler, H & Graeff, H (1995). Model system for isolation of competent ovarian carcinoma cells from fresh tumor tissue by magnetic cell separation technique (MACS). Internat J Oncol 6: 1249–1254.

    CAS  Google Scholar 

  • Hardingham, JE, Kotasek, D, Farmer, B, Butler, RN, Mi, JX, Sage, RE & Dobrovic, A (1993). Immunobead-PCR: a technique for the detection of circulating tumor cells using immunomagnetic beads and the polymerase chain reaction. Cancer Res 53: 3455–3458.

    CAS  PubMed  Google Scholar 

  • Hardingham, JE, Kotasek, D, Sage, RE, Eaton, MC, Pascoe, VH & Dobrovic, A (1995). Detection of circulating tumor cells in colorectal cancer by immunobead_PCR is a sensitive prognostic marker for relapse of disease. Mol Med 1: 789–794.

    Article  CAS  Google Scholar 

  • Helfrich, W, ten Poele, R, Meersma, GJ, Mulder, NH, de Vries, EJ, de Leij, L & Smit, EF (1997). A quantitative reverse transcriptase polymerase chain reaction-based assay to detect carcinoma cells in peripheral blood. Br J Cancer 76: 29–35.

    Article  CAS  Google Scholar 

  • Hildebrandt, M, Mapara, MY, Korner, IJ, Bargou, RC, Moldenhauer, G & Dorken, B (1997). Reverse transcriptase-polymerase chain reaction (RT-PCR)-controlled immunomagnetic purging of breast cancer cells using the magnetic cell separation (MACS) system: a sensitive method for monitoring purging efficiency. Exp Hematol 25: 57–65.

    CAS  PubMed  Google Scholar 

  • Ichikawa, D, Hashimoto, N, Hoshima, M, Yamaguchi, T, Sawai, K, Nakumura, Y, Takahashi, T, Abe, T & Inazawa, J (1996). Analysis of numerical aberrations of specific chromosomes by fluorescence in situ hybridization as a diagnostic tool in breast cancer. Cancer 77: 2064–2069.

    Article  CAS  Google Scholar 

  • Ishikawa, T, Kobayashi, M, Mai, M, Suzuki, T & Ooi, A (1997). Amplification of the c-erbB-2 (Her-2/neu) gene in gastric cancer cells. Detection by fluorescence in situ hybridization. Am J Pathol 151: 761–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kallioniemi, OP, Kallioniemi, A, Kursiu, W, Thor, A, Chen, LC, Smith, HS, Waldman, FM, Pinkel, D & Gray, JW (1992). ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA 89: 5321–5325.

    Article  CAS  Google Scholar 

  • Kiechle-Schwarz, M, Decker, HJH, Berger, CS, Fiebig, CS & Sandberg, AA (1991). Detection of monosomy in interphase nuclei and identification of marker chromosomes using biotinylated alpha-satellite DNA probes. Cancer Genet Cytogenet 51: 23–33.

    Article  CAS  Google Scholar 

  • Kruger, W, Krzizanowski, C, Holweg, M, Stockschlader, M, Kroger, N, Jung, R, Mross, K, Jonat, W & Zander, AR (1996). Reverse transcriptase/polymerase chain reaction detection of cytokeratin-19 mRNA in bone marrow and blood of breast cancer patients. J Cancer Res Clin Oncol 122: 679–686.

    Article  CAS  Google Scholar 

  • Kruger, WH, Stockschlader, M, Hennings, S, Aschenbrenner, M, Gruber, M, Gutensohn, K, Loliger, C, Gieseking, F, Jonat, W & Zander, AR (1996). Detection of cancer cells in peripheral blood stem cells of women with breast cancer by RT-PCR and cell culture. Bone Marrow Transplant 18: 18–20.

    Google Scholar 

  • Kvalheim, G (1996). Detection of occult tumour cells in bone marrow and blood in breast cancer patients – methods and clinical significance. Acta Oncol 35: 13–18.

    Article  Google Scholar 

  • Le Beau, MM (1993). Detecting genetic changes in human tumor cells: Have scientists ‘gone fishing?’. Blood 81: 1979–1983.

    CAS  PubMed  Google Scholar 

  • Luppi, M, Morselli, M, Bandieri, E, Federico, M, Marasca, R, Barozzi, P, Ferrari, MG, Savarino, M, Frassoldati, A & Torelli, G (1996). Sensitive detection of circulating breast cancer cells by reverse-transcriptase polymerase chain reaction of maspin gene. Ann Oncol 7: 619–624.

    Article  CAS  Google Scholar 

  • Mapara, MY, Körner, IJ, Hildebrandt, M, Bargou, R, Krahl, D, Reichardt, P & Dörken, B (1997). Monitoring of tumor cell purging after highly enriched efficient immunomagnetic selection of CD34 cells from leukapheresis products in breast cancer patients: Comparison of immunocytochemical tumor cell staining and reverse transcriptase-polymerase chain reaction. Blood 89: 337–344.

    CAS  PubMed  Google Scholar 

  • Martin, VM, Siewert, C, Scharl, A, Harms, T, Heinze, R, Ohl, S, Radbruch, A, Miltenyi, S & Schmitz, J (1998). Immunomagnetic enrichment of disseminated epithelial tumor cells from peripheral blood by MACS. Exp Hematol 26: 252–264.

    CAS  PubMed  Google Scholar 

  • Micale, MA, Visscher, DW, Gulino, SE & Wolman, SR (1994). Chromosomal aneuploidy in proliferative breast disease. Human Pathol 25: 29–35.

    Article  CAS  Google Scholar 

  • Miltenyi, S, Muller, W, Weichel, W & Radbruch, A (1990). High gradient magnetic cell separation with MACS. Cytometry 11: 231–238.

    Article  CAS  Google Scholar 

  • Moscinski, LC, Trudeau, WL, Fields, KK & Elfenbein, GJ (1996). High-sensitive detection of minimal residual breast carcinoma using polymerase chain reaction and primers for cytokeratin 19. Diagn Mol Pathol 5: 173–180.

    Article  CAS  Google Scholar 

  • Muller, P, Weckermann, D, Riethmuller, G & Schlimok, G (1996). Detection of genetic alterations in micrometastatic cells in bone marrow of cancer patients by fluorescence in situ hybridization. Cancer Genet Cytogenet 88: 8–16.

    Article  CAS  Google Scholar 

  • Naume, B, Borgen, E, Beiske, K, Herstad, TK, Ravnas, G, Renolen, A, Trachsel, S, Thrane-Steen, K, Funderud, S & Kvalheim, G (1997). Immunomagnetic techniques for the enrichment and detection of isolated breast carcinoma cells in bone marrow and peripheral blood. J Hematother 6: 103–114.

    Article  CAS  Google Scholar 

  • Noguchi, S, Aihara, T, Motomura, K, Inaji, H, Imaoka, S & Koyama, H (1996). Detection of breast cancer micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction. Comparison between MUC1 mRNA and keratin 19 mRNA amplification. Am J Pathol 148: 649–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pantel, K (1996). Detection of minimal residual disease in patients with solid tumors. J Hematother 5: 359–367.

    Article  CAS  Google Scholar 

  • Persons, DL, Hartmann, LC, Herath, JF, Keeney, GL & Jenkins, RB (1994). Fluorescence in situ hybridization analysis of trisomy 12 in ovarian tumors. Am J Clin Pathol 102: 775–779.

    Article  CAS  Google Scholar 

  • Press, MF, Bernstein, L, Thomas, PA, Meisner, LF, Zhou, JY, Ma, Y, Hung, G, Robinson, RA, Harris, C, El-Naggar, AK, Slamon, DJ, Phillips, RN, Ross, JS, Wolman, SR & Flom, KJ (1997). HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol 15: 2894–2904.

    Article  CAS  Google Scholar 

  • Revillion, F, Bonneterre, J & Peyrat, JP (1998). ERBB2 oncogene in human breast cancer and its clinical significance. Eur J Cancer 34: 791–808.

    Article  CAS  Google Scholar 

  • Ross, AA (1998). Minimal residual disease in solid tumor malignancies: a review. J Hematother 7: 9–18.

    Article  CAS  Google Scholar 

  • Sauter, G, Feichter, G, Torhorst, J, Moch, H, Novotna, H, Wagner, U, Durmuller, U & Waldman, FM (1996). Fluorescence in situ hybridization for detecting erbB-2 amplification in breast tumor fine needle aspiration biopsies. Acta Cytol 40: 164–173.

    Article  CAS  Google Scholar 

  • Schildkraut, JM, Collins, NK, Dent, GA, Tucker, JA, Barret, JC, Berchuck, A & Boyd, J (1995). Loss of heterozygosity on chromosome 17q11–21 in cancers of women who have both breast and ovarian cancer. Am J Obstet Gynecol 172: 908–913.

    Article  CAS  Google Scholar 

  • Schoenefeld, A, Luqmani, Y, Smith, D, O’Reilly, S, Shousha, S, Sinnet, HD & Coombes, RC (1994). Detection of breast cancer micrometatases in axillary lymph nodes by using polymerase chain reaction. Cancer Res 54: 2986–2990.

    Google Scholar 

  • Schoenfeld, A, Kruger, KH, Gomm, J, Sinnett, HD, Gazet, JC, Sacks, N, Bender, HG, Luqmani, Y & Coombes, RC (1997). The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. Eur J Cancer 33: 854–861.

    Article  CAS  Google Scholar 

  • Smith, B, Selby, P, Southgate, J, Pittman, K, Bradley, C & Blair, GE (1991). Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet 338: 1227–1229.

    Article  CAS  Google Scholar 

  • Traystman, MD, Cochran, GT, Hake, SJ, Kuszynski, CA, Mann, SL, Murphy, BJ, Pirruccello, SJ, Zuvanich, E & Sharp, JG (1997). Comparison of molecular cytokeratin 19 reverse transcriptase polymerase chain reaction (CK19 RT-PCR) and immunocytochemical detection of micrometastatic breast cancer cells in hematopoietic harvests. J Hematother 6: 551–561.

    Article  CAS  Google Scholar 

  • Visscher, DW, Wallis, T & Ritchie, CA (1995). Detection of chromosome aneuploidy in breast lesions with fluorescence in situ hybridization: comparison of whole nuclei to thin tissue sections and correlation with flow cytometric DNA analysis. Cytometry 21: 95–100.

    Article  CAS  Google Scholar 

  • Visscher, DW, Wallis, TL & Crissmann, JD (1996). Evaluation of chromosome aneuploidy in tissue sections of preinvasive breast carcinomas using interphase cytogenetics. Cancer 77: 315–320.

    Article  CAS  Google Scholar 

  • Vrendenburgh, JJ, Silva, O, Tyer, C, DeSombre, K, Abou-Ghalia, A, Cook, M, Layfied, L, Peters, WP & Bast, RC Jr (1996). A comparison of immunohistochemistry, two-color immunofluorescence, and flow cytometry with cell sorting for the detection of micrometastatic breast cancer in the bone marrow. J Hematother 5: 57–62.

    Article  Google Scholar 

  • Xu, J & Wang, N (1994). Identification of chromosomal structural alterations in human ovarian carcinoma cells using combined GTG-banding and repetitive fluorescence in situ hybridization (FISH). Cancer Genet Cytogenet 74: 1–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Gynaecology and Obstetrics, University of Cologne, Germany

    H Engel, C Kleespies, J Friedrich, M Breidenbach, A Kallenborn, T Schöndorf, H Kolhagen & P Mallmann

  2. Department of Haematology and Oncology, Medical School Hannover, Carl-Neuberg-Strasse 1, Hannover, 30623, Germany

    H Engel

Authors
  1. H Engel
    View author publications

    Search author on:PubMed Google Scholar

  2. C Kleespies
    View author publications

    Search author on:PubMed Google Scholar

  3. J Friedrich
    View author publications

    Search author on:PubMed Google Scholar

  4. M Breidenbach
    View author publications

    Search author on:PubMed Google Scholar

  5. A Kallenborn
    View author publications

    Search author on:PubMed Google Scholar

  6. T Schöndorf
    View author publications

    Search author on:PubMed Google Scholar

  7. H Kolhagen
    View author publications

    Search author on:PubMed Google Scholar

  8. P Mallmann
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Engel, H., Kleespies, C., Friedrich, J. et al. Detection of circulating tumour cells in patients with breast or ovarian cancer by molecular cytogenetics. Br J Cancer 81, 1165–1173 (1999). https://doi.org/10.1038/sj.bjc.6690825

Download citation

  • Received: 07 October 1998

  • Revised: 17 May 1999

  • Accepted: 25 May 1999

  • Published: 12 November 1999

  • Issue date: 01 December 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690825

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • circulating tumour cells
  • MACS
  • FISH

This article is cited by

  • Clinical significance of miR-144-ZFX axis in disseminated tumour cells in bone marrow in gastric cancer cases

    • S Akiyoshi
    • T Fukagawa
    • M Mori

    British Journal of Cancer (2012)

  • Enhanced Specificity of Multiplex Polymerase Chain Reaction via CdTe Quantum Dots

    • Gaofeng Liang
    • Chao Ma
    • Zhongdang Xiao

    Nanoscale Research Letters (2010)

  • Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization

    • Bin LI
    • Yong Lian ZHANG

    Cell Research (2002)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited