Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 20 January 2000

Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39

  • S Kakolyris1,5 na1,
  • S B Fox1,7 na1,
  • M Koukourakis3,
  • A Giatromanolaki6,
  • N Brown2,
  • R D Leek2,
  • M Taylor3,
  • I M Leigh4,
  • K C Gatter1 &
  • …
  • A L Harris2 

British Journal of Cancer volume 82, pages 844–851 (2000)Cite this article

  • 1201 Accesses

  • 53 Citations

  • Metrics details

This article has been updated

Abstract

Angiogenesis, the formation of new vessels, has been demonstrated to be an indicator of prognosis in breast cancer patients. The extent of differentiation of the tumour vessels may affect access of peripheral white cells and egress or invasion of tumour cells. This has not been assessed in relation to tumour microvessel density or other variables and may be a marker of vascular remodelling. LH39 is a monoclonal antibody recognizing an epitope located at the lamina lucida of mature small veins and capillaries but not in newly formed vessels. To study vascular differentiation in breast tumours, we examined the vascular maturation index (VMI) in 12 normal and 50 breast carcinomas and this was correlated with different clinicopathological variables including angiogenesis. Mature vessels were defined by staining with antibodies to both LH39 and to CD31, using double immunohistochemistry, whereas immature vessels stained only for CD31. VMI was defined as the % fraction of mature vessels (LH39-positive) / total number of vessels (CD31-positive). The VMI was significantly higher in normal (54–68.5%; median 66.5%) than in tumours (0–47%; median 8.8%) (P = 0.0005). There was a significant inverse correlation between the tumour VMI and nodal status (Fisher’s exact test, P = 0.01) and between high VMI and low thymidine phosphorylase (TP) expression (Mann–Whitney U -test, P = 0.01). No significant association between VMI and tumour size, oestrogen receptor, epidermal growth factor receptor, grade, angiogenesis, patient age, or E-selectin was seen. There was a significant reduction in relapse-free survival (P = 0.01) with high angiogenesis. These findings show that the VMI gives new information on the mechanism of tumour angiogenesis independently from microvessel quantitation, there is a wide variation in the differentiation of tumour vasculature but the degree of capillary differentiation is not associated with quantitative angiogenesis. The VMI identifies a subset of patients who have a high chance of regional node involvement. © 2000 Cancer Research Campaign

Similar content being viewed by others

Dynamic differentiation of F4/80+ tumor-associated macrophage and its role in tumor vascularization in a syngeneic mouse model of colorectal liver metastasis

Article Open access 13 February 2023

Targeting the tumour vasculature: from vessel destruction to promotion

Article 29 August 2024

Normalization of Snai1-mediated vessel dysfunction increases drug response in cancer

Article Open access 02 August 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Almeida BM, Challacombe SJ, Eveson JW, Smith CG and Leigh IM (1992a) A novel lamina lucida component of epithelial and endothelial basement membranes detected by LH39 monoclonal antibody. J Pathol 166: 243–253

    Article  CAS  PubMed  Google Scholar 

  • Almeida BM, Challacombe SJ, Eveson JW, Morgan PR, Purkis PE and Leigh IM (1992b) The distribution of LH39 basement membrane epitope in the tumour stroma of oral squamous cell carcinomas. J Pathol 166: 369–374

    Article  CAS  PubMed  Google Scholar 

  • Bosari S, Lee AKC, DeLellis RA, Wiley BD, Heatley GJ and Silverman ML (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23: 755–761

    Article  CAS  PubMed  Google Scholar 

  • Bischoff J (1995) Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol 5: 69–74

    Article  CAS  PubMed  Google Scholar 

  • Blood CH and Zetter BR (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim Biophys Acta 1032: 89–118

    CAS  PubMed  Google Scholar 

  • Caulin-Glazer T, Watson C, Pardi R and Bender J (1996) Efects of 17β-estradiol on cytokine induced endothelial cell adhesion molecule expression. J Clin Invest 98: 26–42

    Google Scholar 

  • Chalkley H (1943) Method for the quantative morphological analysis of tissues. J Natl Cancer Inst 4: 47–53

    Google Scholar 

  • Deng G, Lu Y, Zlotnikof G, Thor A and Hs S (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274: 2057–2059

    Article  CAS  PubMed  Google Scholar 

  • Denton KJ, Stretch JR, Gatter KC and Harris AL (1992) A study of adhesion molecules as markers of progression in malignant melanoma. J Pathol 167: 187–191

    Article  CAS  PubMed  Google Scholar 

  • Folberg R, Rummelt V, Ginderdeuren R-V, Hwang T, Woolson R, Pe'er J and Gruman L (1993) The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 100: 1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumours are angiogenesis dependent?. J Natl Cancer Inst 82: 4–6

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1996). What is the role of thymidine phosphorylase?,

  • Folkman J (1997) New perspectives in clinical oncology from angiogenesis research. Eur J Cancer 32A: 2534–2539

    Google Scholar 

  • Fox SB (1997) Tumor angiogenesis and prognosis. Histopathology 30: 294–301

    Article  CAS  PubMed  Google Scholar 

  • Fox SB, Gatter KC, Bicknell R, Going J, Stanton P, Cooke T and Harris AL (1993) Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res 53: 9161–9163

    Google Scholar 

  • Fox SB, Smith K, Hollyer J, Greenall M, Hastrich D and Harris AL (1994) The epidermal growth factor receptor as a prognostic marker: results of 370 patients and review of 3009 patients. Breast Cancer Res Treat 29: 41–49

    Article  CAS  PubMed  Google Scholar 

  • Fox SB, Turner GDH, Gatter KC and Harris AL (1995a) The increased expression of adhesion molecules ICAM-3, E and P selectin on breast endothelium. J Pathol 177: 369–376

    Article  CAS  PubMed  Google Scholar 

  • Fox SB, Moghaddam A, Westwood M, Turley H, Bicknell R, Gatter KC and Harris AL (1995b) Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in normal tissues: an immunohistochemical study. J Pathol 176: 183–190

    Article  CAS  PubMed  Google Scholar 

  • Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC and Harris AL (1995c) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count and computer image analysis. J Pathol 177: 275–283

    Article  CAS  PubMed  Google Scholar 

  • Fox SB, Turner GDH, Leek RD, Whitehouse RM, Gatter KC and Harris AL (1995d) The prognostic value of quantitative angiogenesis in breast cancer and role of adhesion molecule expression in tumour endothelium. Breast Cancer Res Treat 36: 219–226

    Article  CAS  PubMed  Google Scholar 

  • Fox SB, Westwood M, Moghaddam A, Comley M, Turley H, Whitehouse RM, Bicknell R, Gatter KC and Harris AL (1996) The angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase is up-regulated in breast cancer epithelium and endothelium. Br J Cancer 73: 275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant DS, Kibbey MC, Kinsella JL, Cid MC and Kleinman HK (1994) The role of basement membrane in angiogenesis and tumor growth. Pathol Res Pract 190: 854–863

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi M, Kazutaka M, Uemura K, Sumizawa T, Furukawa Yamada K and Akiyama S-I (1994) Angiogenic activity of enzymes. Nature 368: 198–200

    Article  CAS  PubMed  Google Scholar 

  • Ingber D and Folkman J (1988) Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59: 44–51

    CAS  PubMed  Google Scholar 

  • Kaplanski G, Farnarier C, Benoliel A, Foa C, Kaplanski S and Bongrand P (1994) A novel role for E- and P-selectins: shape of endothelial cell monolayers. J Cell Sci 107: 2449–2457

    CAS  PubMed  Google Scholar 

  • Kato T, Kimura T, Ishii N, Fujii A, Yamamoto K, Kameoka S, Nishikawa T and Kasajima T (1999) The methodology of quantitation of microvessel density and prognostic value of neovascularization associated with long-term survival in Japanese patients with breast cancer. Breast Cancer Res Treat 53: 19–31

    Article  CAS  PubMed  Google Scholar 

  • Kibbey MC, Grant DS and Kleinman HK (1992) Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J Natl Cancer Inst 84: 1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Laurie GW and Leblond CP (1985) Basement membrane nomenclature. Nature 313: 272–274

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Lunderquist A, Hagerstrand I and Boijsen E (1984) Postmortem examination of the blood supply and vascular pattern of small liver metastases in man. Surgery 96: 517–526

    CAS  PubMed  Google Scholar 

  • Luscinskas FN and Lawler J (1994) Integrins as dynamic regulators of vascular function. FASEB J 8: 929–938

    Article  CAS  PubMed  Google Scholar 

  • Maragoudakis ME, Sarmonika M and Panoutsakopoulou M (1988) Inhibition of basement membrane biosynthesis prevents angiogenesis. J Pharmacol Exp Ther 244: 729–733

    CAS  PubMed  Google Scholar 

  • Moghaddam A, Zhang H-T, Fan T-P, Hu D-E, Lees V, Turley H, Fox SB, Gatter KC, Harris AL and Bicknell R (1995) Thymidine phosphorylase is angiogenic and promotes tumour growth. Proc Natl Acad Sci USA 92: 988–1002

    Article  Google Scholar 

  • Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, Cid MC, Kleinman HK and Schnaper HW (1995) Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 91: 755–763

    Article  CAS  PubMed  Google Scholar 

  • Nelson H, Ramsey P, Donohue J and Wold L (1994) Cell adhesion molecule expression within the microvasculature of human colorectal malignancies. Clin Immunol Immunopathol 72: 129–136

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M, Strubel NA and Bischoff J (1993) A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365: 267–269

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF and Folkman J (1994) Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 86: 356–361

    Article  CAS  PubMed  Google Scholar 

  • Nicosia RF and Bonanno E (1991) Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide. Am J Pathol 138: 829–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlidge A and D’Amore PA (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105: 1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Paku S and Paweletz N (1991) First steps of tumor-related angiogenesis. Lab Invest 65: 334–346

    CAS  PubMed  Google Scholar 

  • Paweletz N and Knierim M (1989) Tumor-related angiogenesis. Crit Rev Oncol Hematol 9: 197–242

    Article  CAS  PubMed  Google Scholar 

  • Pezella F, Dibacco A, Andreola S, Nicholson AG, Pastorino U and Harris AL (1996) Angiogenesis in primary lung-cancer and lung secondaries. Eur J Cancer 32A: 2494–2500

    Article  Google Scholar 

  • Sakamoto N, Iwahana M, Tanaka NG and Osada Y (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res 51: 903–906

    CAS  PubMed  Google Scholar 

  • Schnaper H, McGowan K, Kim-Schulze S and Cid M (1996) Oestrogen and endothelial cell angiogenic activity. Clin Exp Pharmacol Physiol 23: 247–250

    Article  CAS  PubMed  Google Scholar 

  • Sholley M, Ferguson G, Hr S, Montour J and Wilson J (1984) Mechanisms of neovascularization; vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 51: 624–634

    CAS  PubMed  Google Scholar 

  • Skinner SA, Frydman GM and O’Brien PE (1995) Microvascular structure of benign and malignant tumours of the colon in humans. Dig Dis Sci 40: 373–384

    Article  CAS  PubMed  Google Scholar 

  • Toi M, Hoshina S, Takayanagi T and Tominaga T (1994) Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 85: 1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hoef MEHM, Knox WF, Dhesi SS, Howell A and Schor AM (1993) Assessment of tumour vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur J Cancer 29: 1141–1145

    Article  Google Scholar 

  • Vartanian RK and Weidner N (1994) Correlation of intratumoral endothelial-cell proliferation with microvessel density (tumor angiogenesis) and tumor-cell proliferation in breast-carcinoma. Am J Pathol 144: 1188–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warren B (1997) The vascular morphology of tumors. In: Tumor Blood Circulation, Peterson H (ed), pp. 1–47, CRC Press: Boca Raton

    Google Scholar 

  • Weidner N, Semple JP, Welch WR and Folkman J (1991) Tumour angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324: 1–8

    Article  CAS  PubMed  Google Scholar 

  • Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S and Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84: 1875–1887

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. S Kakolyris and S B Fox: Contributed equally to this work

Authors and Affiliations

  1. Department of Cellular Science, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK

    S Kakolyris, S B Fox & K C Gatter

  2. ICRF Molecular Oncology Laboratory, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK

    N Brown, R D Leek & A L Harris

  3. ICRF Clinical Oncology Unit, Churchill Hospital, Oxford, OX3 7LJ, UK

    M Koukourakis & M Taylor

  4. Experimental Dermatology Laboratory, The Royal London Hospital, London, E1 1BB, UK

    I M Leigh

  5. Department of Clinical Oncology, Heraklion, Crete, PO Box 1352, 711 10, Greece

    S Kakolyris

  6. Laboratory of Cancer Biology, University Hospital of Heraklion, Heraklion, Crete, PO Box 1352, 711 10, Greece

    A Giatromanolaki

  7. Anatomical Pathology, Canterbury Health, Christchurch Hospital, Private Bag 1470, Christchurch, New Zealand

    S B Fox

Authors
  1. S Kakolyris
    View author publications

    Search author on:PubMed Google Scholar

  2. S B Fox
    View author publications

    Search author on:PubMed Google Scholar

  3. M Koukourakis
    View author publications

    Search author on:PubMed Google Scholar

  4. A Giatromanolaki
    View author publications

    Search author on:PubMed Google Scholar

  5. N Brown
    View author publications

    Search author on:PubMed Google Scholar

  6. R D Leek
    View author publications

    Search author on:PubMed Google Scholar

  7. M Taylor
    View author publications

    Search author on:PubMed Google Scholar

  8. I M Leigh
    View author publications

    Search author on:PubMed Google Scholar

  9. K C Gatter
    View author publications

    Search author on:PubMed Google Scholar

  10. A L Harris
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Kakolyris, S., Fox, S., Koukourakis, M. et al. Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39. Br J Cancer 82, 844–851 (2000). https://doi.org/10.1054/bjoc.1999.1010

Download citation

  • Received: 26 October 1998

  • Revised: 10 September 1999

  • Accepted: 16 September 1999

  • Published: 20 January 2000

  • Issue date: 01 February 2000

  • DOI: https://doi.org/10.1054/bjoc.1999.1010

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • LH39
  • angiogenesis
  • vascular maturation
  • breast cancer

This article is cited by

  • Adipose Stroma Accelerates the Invasion and Escape of Human Breast Cancer Cells from an Engineered Microtumor

    • Yoseph W. Dance
    • Tova Meshulam
    • Joe Tien

    Cellular and Molecular Bioengineering (2022)

  • Endothelial caveolin and its scaffolding domain in cancer

    • Pascal Bernatchez

    Cancer and Metastasis Reviews (2020)

  • Gene-expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes

    • François Pepin
    • Nicholas Bertos
    • Morag Park

    Breast Cancer Research (2012)

  • Phase 1 study of the novel vascular disrupting agent plinabulin (NPI-2358) and docetaxel

    • Michael Millward
    • Paul Mainwaring
    • Matthew A. Spear

    Investigational New Drugs (2012)

  • Angiogenesis in salivary carcinomas with and without myoepithelial differentiation

    • A. F. Costa
    • A. P. D. Demasi
    • A. Altemani

    Virchows Archiv (2008)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited