Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 08 August 2000

Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells

  • D Coelho1 na1,
  • V Holl1 na1,
  • D Weltin1,
  • T Lacornerie2,
  • P Magnenet2,
  • P Dufour1 &
  • …
  • P Bischoff1 

British Journal of Cancer volume 83, pages 642–649 (2000)Cite this article

  • 2002 Accesses

  • 37 Citations

  • 3 Altmetric

  • Metrics details

This article has been updated

Abstract

Caspases, a family of cysteine proteases, play a central role in the pathways leading to apoptosis. Recently, it has been reported that a broad spectrum inhibitor of caspases, the tripeptide Z-VAD-fmk, induced a switch from apoptosis to necrosis in dexamethasone-treated B lymphocytes and thymocytes. As such a cell death conversion could increase the efficiency of radiation therapy and in order to identify the caspases involved in this cell death transition, we investigated the effects of caspase-3-related proteases inhibition in irradiated MOLT-4 cells. Cells were pretreated with Ac-DEVD-CHO, an inhibitor of caspase-3-like activity, and submitted to X-rays at doses ranging from 1 to 4 Gy. Our results show that the inhibition of caspase-3-like activity prevents completely the appearance of the classical hallmarks of apoptosis such as internucleosomal DNA fragmentation or hypodiploid particles formation and partially the externalization of phosphatidylserine. However, this was not accompanied by any persistent increase in cell survival. Instead, irradiated cells treated by this inhibitor exhibited characteristics of a necrotic cell death. Therefore, functional caspase-3-subfamily not only appears as key proteases in the execution of the apoptotic process, but their activity may also influence the type of cell death following an exposure to ionizing radiation. © 2000 Cancer Research Campaign

Similar content being viewed by others

Caspases as master regulators of programmed cell death: apoptosis, pyroptosis and beyond

Article Open access 24 June 2025

Caspases: structural and molecular mechanisms and functions in cell death, innate immunity, and disease

Article Open access 05 May 2025

A guide to cell death pathways

Article 18 December 2023

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Belka C, Marini P, Budach W, Schulze-Osthoff K, Lang F, Gilbins E & Bamberg M (1998) Radiation-induced apoptosis in human lymphocytes and lymphoma cells critically relies on the up-regulation of CD95/Fas/APO-1 ligand. Radiat Res 149: 588–595

    Article  CAS  Google Scholar 

  • Buttke TM & Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15: 7–10

    Article  CAS  Google Scholar 

  • Chandler JM, Cohen GM & MacFarlane M (1998) Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver. J Biol Chem 273: 10815–10818

    Article  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326: 1–16

    Article  CAS  Google Scholar 

  • Datta R, Kojima H, Banach D, Bump NJ, Talanian RV, Alnemri ES, Weichselbaum RR, Wong WW & Kufe DW (1997) Activation of a CrmA-insensitive, p35-sensitive pathway in ionizing radiation-induced apoptosis. J Biol Chem 272: 1965–1969

    Article  CAS  Google Scholar 

  • Eguchi Y, Shimizu S & Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57: 1835–1840

    CAS  PubMed  Google Scholar 

  • Fernandes-Alnemri T, Takahashi A, Armstrong R, Krebs J, Fritz L, Tomaselli KJ, Wang L, Yu Z, Croce CM, Salveson G, Earnshaw WC, Litwack G & Alnemri ES (1995) Mch3 a novel human apoptotic cyteine protease highly related to CPP32. Cancer Res 55: 6045–6052

    CAS  PubMed  Google Scholar 

  • Gurtu V, Kain SR & Zhang G (1997) Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem 251: 98–102

    Article  CAS  Google Scholar 

  • Ha HC & Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96: 13978–13982

    Article  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z & Kolesnick RN (1994) Ionizing radiations acts on cellular membranes to generate ceramide and initiates apoptosis. J Exp Med 180: 525–535

    Article  CAS  Google Scholar 

  • Hallan E, Blomhoff HK, Smeland EB & Lomo J (1997) Involvement of ICE- (Caspase) family in γ-radiation-induced apoptosis of normal B lymphocytes. Scand J Immunol 46: 601–608

    Article  CAS  Google Scholar 

  • Han Z, Hendrickson EA, Bremner TA & Wyche JH (1997) A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 272: 13432–13436

    Article  CAS  Google Scholar 

  • Herceg Z & Wang Z-Q (1999) Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 19: 5124–5133

    Article  CAS  Google Scholar 

  • Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzani N, Marzo I, Geuskens M & Kroemer G (1997) The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial transition determine the mode of cell death. Oncogene 15: 1573–1581

    Article  CAS  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kühnle S & Nicotera P (1997) Intracellular Adenosine triphosphate concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–1486

    Article  CAS  Google Scholar 

  • Lemaire C, Andreau K, Souvannavong V & Adam A (1998) Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett 425: 266–270

    Article  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES & Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease casacade. Cell 91: 479–489

    Article  CAS  Google Scholar 

  • Machleidt T, Geller P, Schwandner R, Scherer G & Kronke M (1998) Caspase-7-induced cleavage of kinectin in apoptotic cells. FEBS Lett 436: 51–54

    Article  CAS  Google Scholar 

  • Martin SJ, Finucane DM, Amarante-Mendes GP, O’Brien GA & Green DR (1996) Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. J Biol Chem 271: 28753–28756

    Article  CAS  Google Scholar 

  • McCarthy NJ, Whyte MKB, Gilbert CS & Evan GI (1997) Inhibition of Ced-3/ICE related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136: 215–227

    Article  CAS  Google Scholar 

  • McConkey DJ (1998) Biochemical determinants of apoptosis and necrosis. Toxicol Lett 99: 157–168

    Article  CAS  Google Scholar 

  • Melcher A, Gough M, Todryk S & Vile R (1999) Apoptosis or necrosis for tumor immunotherapy: what’s in a name?. J Mol Med 77: 824–833

    Article  CAS  Google Scholar 

  • Mignon A, Rouquet N & Joulin V (1998) Les caspases, les protéases à cystéine de l’apoptose: un enjeu thérapeuthique pour demain?. Med Sci 14: 9–17

    Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL & Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43

    Article  CAS  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F & Riccardi C (1991) A rapid and simple method for measuring thymocytes apoptosis by propidium iodide staining and flow cytometry. J Immunol Meth 139: 271–276

    Article  CAS  Google Scholar 

  • Reiter I, Krammer B & Schwamberger G (1999) Differential effect of apoptotic versus necrotic tumor cells on macrophage antitumor activities. J Immunol 163: 1730–1732

    CAS  PubMed  Google Scholar 

  • Richter C, Schweizer M, Cossarizza A & Franceschi C (1996) Control of apoptosis by the cellular ATP level. FEBS Lett 378: 107–110

    Article  CAS  Google Scholar 

  • Sané A-T & Bertrand R (1999) Caspase inhibition in camptothecin treated U-937 cells is coupled with a shift from apoptosis to transient G1 arrest followed by necrotic cell death. Cancer Res 59: 3565–3569

    PubMed  Google Scholar 

  • Sauter B, Albert ML, Francisco L, Larsson M, Somersan S & Bhardwaj N (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191: 423–434

    Article  CAS  Google Scholar 

  • Stefanelli C, Bonavita F, Stanie I, Farruggia G, Falcieri E, Robuffo I, Pignatti C, Muscari C, Rossoni C, Guarnietri C & Caldarerra CM (1997) ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis. Biochem J 322: 909–917

    Article  CAS  Google Scholar 

  • Thornberry NA & Lazebnik Y (1998) Caspases: enemies within. Science 281: 1312–1316

    Article  CAS  Google Scholar 

  • Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT & Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. J Biol Chem 272: 17907–17911

    Article  CAS  Google Scholar 

  • Verhoven B, Schlegel RA & Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal on apoptotic T lymphocytes. J Exp Med 182: 1597–1601

    Article  CAS  Google Scholar 

  • Yu Y & Little JB (1998) p53 is involved in but not required for ionizing radiation-induced caspase-3 activation and apoptosis in human lymphoblast cell lines. Cancer Res 58: 4277–4281

    CAS  PubMed  Google Scholar 

  • Zheng TS, Schlosser SF, Dao T, Hingorani R, Crispe N, Boyer JL & Flavell RA (1998) Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc Natl Acad Sci USA 95: 13618–13623

    Article  CAS  Google Scholar 

  • Zhivotovski B, Joseph B & Orrenius S (1999) Tumor radiosensitivity and apoptosis. Exp Cell Res 248: 10–17

    Article  Google Scholar 

  • Zwaal RFA & Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89: 1121–1132

    CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. D Coelho and V Holl: The two first authors contributed equally to this study.

Authors and Affiliations

  1. Laboratoire de Cancérologie Expérimentale et de Radiobiologie, IRCAD, Hôpitaux Universitaires, BP 426, Strasbourg Cedex, F-67091, France

    D Coelho, V Holl, D Weltin, P Dufour & P Bischoff

  2. Centre Paul Strauss, Strasbourg, F-67000, France

    T Lacornerie & P Magnenet

Authors
  1. D Coelho
    View author publications

    Search author on:PubMed Google Scholar

  2. V Holl
    View author publications

    Search author on:PubMed Google Scholar

  3. D Weltin
    View author publications

    Search author on:PubMed Google Scholar

  4. T Lacornerie
    View author publications

    Search author on:PubMed Google Scholar

  5. P Magnenet
    View author publications

    Search author on:PubMed Google Scholar

  6. P Dufour
    View author publications

    Search author on:PubMed Google Scholar

  7. P Bischoff
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Coelho, D., Holl, V., Weltin, D. et al. Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells. Br J Cancer 83, 642–649 (2000). https://doi.org/10.1054/bjoc.2000.1322

Download citation

  • Received: 14 October 1999

  • Revised: 02 May 2000

  • Accepted: 07 May 2000

  • Published: 08 August 2000

  • Issue date: 01 September 2000

  • DOI: https://doi.org/10.1054/bjoc.2000.1322

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • apoptosis
  • necrosis
  • caspase
  • ionizing radiation
  • MOLT-4

This article is cited by

  • The ameliorative impacts of curcumin on copper oxychloride-induced hepatotoxicity in rats

    • Heba N. Gad El-Hak
    • Yomn M. Mobarak

    The Journal of Basic and Applied Zoology (2018)

  • Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: Relation to drug cytotoxicity and caspase-3 activation

    • A. Koceva-Chyła
    • M. Jedrzejczak
    • Z. Jóźwiak

    Apoptosis (2005)

  • Apoptosis induction in renal cell carcinoma by TRAIL and γ-radiation is impaired by deficient caspase-9 cleavage

    • U Ramp
    • E Caliskan
    • C D Gerharz

    British Journal of Cancer (2003)

  • Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms

    • Chafké Ahmed Belmokhtar
    • Josette Hillion
    • Evelyne Ségal-Bendirdjian

    Oncogene (2001)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited