Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Differential p53 protein expression in breast cancer fine needle aspirates: the potential for in vivo monitoring
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 16 October 2001

Differential p53 protein expression in breast cancer fine needle aspirates: the potential for in vivo monitoring

  • H M-L Ball1,
  • T R Hupp2,
  • D Ziyaie1,
  • C A Purdie2,
  • N M Kernohan2 &
  • …
  • A M Thompson1 

British Journal of Cancer volume 85, pages 1102–1105 (2001)Cite this article

  • 1786 Accesses

  • 7 Citations

  • 8 Altmetric

  • Metrics details

This article has been updated

Abstract

Fine needle aspiration (FNA) biopsy is the least invasive method of sampling breast cancer in vivo and provides material for breast cancer diagnosis. FNA has also been used to examine cellular markers to predict and monitor the effects of therapy. The aim of this study was to assess the accuracy of using FNA material compared with resected cancer for Western blotting studies of the p53 pathway, a key to tumour response to radiotherapy and chemotherapy. Paired samples of breast cancer FNAs collected pre-operatively and post-operatively were compared with tissue samples obtained at the time of surgical resection. Western blots were probed for p53 using the antibodies DO12 and DO1, and for levels of downstream proteins p21/WAF1 and p27. The protein extracted by FNA was sufficient for up to 5 Western blot studies. p53 expression and phosphorylation did not differ significantly pre- and post-operatively, indicating that intra-operative manipulation does not affect p53 expression or downstream activation in breast cancer. However, expression of p53, p21 and p27 varied between individual patients suggesting a range of p53 pathway activation in breast cancer. Immunohistochemistry confirmed that the cancer cells accounted for the protein expression detected on Western blots. FNA yields adequate protein for Western blotting studies and could be used as a method to monitor p53 activity in vivo before and during anti-cancer treatment possibly providing early evidence of tumour response to therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com

Similar content being viewed by others

TP53: the unluckiest of genes?

Article Open access 23 October 2024

Identification, characterization, and prognosis investigation of pivotal genes shared in different stages of breast cancer

Article Open access 25 May 2023

Screening and predicted value of potential biomarkers for breast cancer using bioinformatics analysis

Article Open access 21 October 2021

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA and Lonning PE (1996) Specific p53 gene mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2: 811–814

    Article  CAS  PubMed  Google Scholar 

  • Andersen TI and Borrensen AL (1995) Alterations of the TP53 gene as a potential prognostic marker in breast carcinomas. Advantages of using constant denaturant gel electrophoresis in mutation detection. Diagn Mol Path 4: 203–211

    Article  CAS  Google Scholar 

  • Barbareschi M, Caffo O, Doglioni C, Fina P, Marchetti A, Buttitta F, Leek R, Morelli L, Leonardi E, Bevilacqua G, Dalla Palma P and Harris AL (1996) p21WAF1 immunohistochemical expression in breast carcinoma: correlations with clinicopathological data, oestrogen receptor status, MIB1 expression, p53 gene and protein alterations and relapse-free survival. Br J Cancer 74: 208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaydes JP and Hupp TR (1998) DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene 17: 1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Blaydes JP, Craig Al, Wallace M, Ball HML, Traynor NJ, Gibbs NK and Hupp TR (2000) Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways. Oncogene 19: 3829–3839

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding. Annal Biochem 72: 248–252

    Article  CAS  Google Scholar 

  • Brotherick I, Shenton BK and Lennard TW (1995) Are fine needle breast aspirated representative of the underlying solid tumour?. Br J Cancer 72: 732–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueso-Ramos CE, Manshouri T, Haidar MA, Yang Y, McCown P, Ordonez N, Glassman A, Sneige N and Albitar M (1996) Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res Treat 37: 179–188

    Article  CAS  PubMed  Google Scholar 

  • Craig AL, Blaydes JP, Burch LR, Thompson AM and Hupp TR (1999) Dephosphorylation of p53 at Ser20 after cellular exposure to low levels of non-ionizing radiation. Oncogene 18: 6305–6312

    Article  CAS  PubMed  Google Scholar 

  • Elledge RM and Allred DC (1998) Prognostic and predictive value of p53 and p21 in breast cancer. Breast Cancer Res Treat 52: 79–98

    Article  CAS  PubMed  Google Scholar 

  • Elledge RM, Lock-Lim S, Allred DC, Hilsenbeck SG and Cordner L (1995) p53 Mutation and Tamoxifen Resistance in Breast Cancer. Clin Cancer Res 1: 1203–1208

    CAS  PubMed  Google Scholar 

  • Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappuis P, Sappino AP, Limacher JM, Bron L, Benhattar J, Tada M, Van Meir EG, Estreicher A and Iggo RD (1995) A simple p53 functional assay for screening cell lines, blood and tumours. Proc Natl Acad Sci 92: 3963–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudlaugsdottir S, Sigurdardottir V, Snorradottir M, Jonasson JG, Ogmundsdottir H and Eyfjord JE (2000) p53 mutation analysis in benign and malignant breast lesions: using needle rinses from fine-needle aspirations. Diagn Cytopathol 22: 268–274

    Article  CAS  PubMed  Google Scholar 

  • Hartley MN, Tuffnell DJ, Hutton JL, Palmer M and Al-Jafari MS (1988) Fine needle aspiration cytology: an in vitro study of cell yield. Br J Surg 75: 380–381

    Article  CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A and Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299

    Article  CAS  PubMed  Google Scholar 

  • Hopwood D, Moitra S, Vojtesek B, Johnston DA, Dillon JF and Hupp TR (1997) Biochemical analysis of the stress protein response in human oesophageal epithelium. Gut 41: 156–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JM, Cui XS, Medina D and Donehower LA (1999) Heterozygosity of p21/WAF1/CIP1 enhances tumour cell proliferation and cyclin D1-associated kinase activity in a murine mammary cancer model. Cell Growth Differ 10: 213–222

    CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311

    CAS  PubMed  Google Scholar 

  • Kuner R, Pollow K, Lehnert A, Pollow B, Scheler P, Krummenauer F, Casper F and Hoffmann G (2000) Needle biopsy vs. Conventional surgical biopsy – biochemical analysis of various prognostic factors. Zentralbl Gynakol 122: 160–164

    CAS  PubMed  Google Scholar 

  • Lavarino C, Corletto V, Mezzelani A, Della Torre G, Bartoli C, Riva C, Pierotti MA, Rilke F and Pilotti S (1998) Detection of TP53 mutation, loss of heterozygosity and DNA content in fine needle aspirates of breast carcinoma. Br J Cancer 77: 125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linke SP, Clarkin KC, Di Leonardo A, Tsou A and Wahl GM (1996) A reversible p53-dependent GO/G1 cell cycle arrest induction by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 10: 934–947

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Bodics S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE and Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science 226: 807–810

    Article  Google Scholar 

  • Makris A, Allred DC, Powles TJ, Dowsett M, Fernando IN, Trott PA, Ashley SE, Ormerod MG, Titley JC and Osborne CK (1997) Cytological evaluation of biological prognostic markers from primary breast carcinomas. Breast Cancer Res Treat 44: 65–74

    Article  CAS  PubMed  Google Scholar 

  • Nizzoli R, Bozzetti C, Naldi N, Guazzi A, Gabrielli M, Michiara M, Camisa R, Barilli A and Cocconi G (2000) Comparison of the results of immunocytochemical assays for biologic variables on preoperative fine-needle aspirates and on surgical specimens of primary breast carcinomas. Cancer 90: 61–66

    Article  CAS  PubMed  Google Scholar 

  • Pelosi G, Bresaola E, Rodella S, Manfrin E, Piubello Q, Schiavon I and Iannucci A (1994) Expression of proliferating cell nuclear antigen, Ki-67 antigen, oestrogen receptor protein and tumour suppressor p53 gene in cytological samples of breast cancer: an immunochemical study with clinical, pathobiological and histological correlations. Diagn Cytopath 11: 131–140

    Article  CAS  Google Scholar 

  • Rao JY, Apple SK, Hemstreet GP, Jin Y and Nieberg RK (1998) Single cell multiple biomarker analysis in archival breast fine needle aspiration specimens: quantitative fluorescence image analysis of DNA content, p53 and G-actin as breast cancer biomarkers. Cancer Epidemiological Biomarkers Prev 11: 1027–1033

    Google Scholar 

  • Sgambato A, Zhang YJ, Arber N, Hibshoosh H, Doki Y, Ciaparrone ME, Santella RM, Cittadini A and Weinstein IB (1997) Deregulated expression of p27 (Kip1) in human breast cancers. Clin Cancer Res 3: 1879–1887

    CAS  PubMed  Google Scholar 

  • Sherr CJ and Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Shiohara M, Koike K, Komiyama A and Koeffler HP (1997) p21WAF1 mutations and human malignancies. Leuk Lymphoma 26: 1–2, 35–41

    Article  Google Scholar 

  • Steele RJC, Thompson AM, Hall PA and Lane DP (1998) The p53 tumour suppressor gene. Br J Surg 85: 1460–1467

    Article  CAS  PubMed  Google Scholar 

  • Stephen CW, Helminen P and Lane DP (1995) Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody -peptide interactions. J Mol Biol 248: 58–78

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Ishihara M, Lamphier MS, Nozawa H, Matsuyama T, Mak TW, Aizawa S, Tokino T, Oren M and Taniguchi T (1996) Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 382: 816–819

    Article  CAS  PubMed  Google Scholar 

  • Taxin A, Tartter PI and Zappetti D (1997) Breast Cancer Diagnosis by Fine Needle Aspiration and Excisional Biopsy. Recurrence and Survival. Acta Cytolgica 41: 302–306

    Article  CAS  Google Scholar 

  • Vojtesek B, Dolezalova H, Lauerova L, Svitakova M, Havlis P, Kovarik J, Midgley CA and Lane DP (1995) Conformational changes in p53 analysed using new antibodies to the core DNA binding domain of the protein. Oncogene 10: 383–393

    Google Scholar 

  • Ziyaie D, Hupp TR and Thompson AM (2000) p53 and breast cancer. The Breast 9: 239–246

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Surgery and Molecular Oncology, Dundee, DD1 9SY, UK

    H M-L Ball, D Ziyaie & A M Thompson

  2. Department of Molecular and Cellular Pathology, Ninewells Hospital, Dundee, DD1 9SY, UK

    T R Hupp, C A Purdie & N M Kernohan

Authors
  1. H M-L Ball
    View author publications

    Search author on:PubMed Google Scholar

  2. T R Hupp
    View author publications

    Search author on:PubMed Google Scholar

  3. D Ziyaie
    View author publications

    Search author on:PubMed Google Scholar

  4. C A Purdie
    View author publications

    Search author on:PubMed Google Scholar

  5. N M Kernohan
    View author publications

    Search author on:PubMed Google Scholar

  6. A M Thompson
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Ball, HL., Hupp, T., Ziyaie, D. et al. Differential p53 protein expression in breast cancer fine needle aspirates: the potential for in vivo monitoring. Br J Cancer 85, 1102–1105 (2001). https://doi.org/10.1054/bjoc.2001.2064

Download citation

  • Received: 10 April 2001

  • Revised: 09 July 2001

  • Accepted: 13 July 2001

  • Published: 16 October 2001

  • Issue date: 19 October 2001

  • DOI: https://doi.org/10.1054/bjoc.2001.2064

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • FNA (fine needle aspiration)
  • breast cancer
  • p53
  • Western blotting
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited