Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Anti-Her-2/neu antibody induces apoptosis in Her-2/neu overexpressing breast cancer cells independently from p53 status
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 27 November 2001

Anti-Her-2/neu antibody induces apoptosis in Her-2/neu overexpressing breast cancer cells independently from p53 status

  • T Brodowicz1,
  • D Kandioler3,
  • S Tomek1,
  • C Ludwig3,
  • M Rudas4,
  • R Kunstfeld1,
  • W Koestler1,
  • M Hejna1,
  • A Budinsky1,
  • C Wiltschke1 &
  • …
  • C C Zielinski1,2,5 

British Journal of Cancer volume 85, pages 1764–1770 (2001)Cite this article

  • 1863 Accesses

  • 16 Citations

  • 6 Altmetric

  • Metrics details

This article has been updated

Abstract

Anti-Her-2/neu antibody is known to induce apoptosis in HER-2/neu overexpressing breast cancer cells. However, exact regulatory mechanisms mediating and controlling this phenomenon are still unknown. In the present study, we have investigated the effect of anti-Her-2/neu antibody on apoptosis of HER-2/neu overexpressing human breast cancer cell lines SK-BR-3, HTB-24, HTB-25, HTB-27, HTB-128, HTB-130 and HTB-131 in relation to p53 genotype and bcl-2 status. SK-BR-3, HTB-24, HTB-128 and HTB-130 cells exhibited mutant p53, whereas wild type p53 was found in HTB-25, HTB-27 and HTB-131 cells. All seven cell lines weakly expressed bcl-2 protein (10–20%). Anti-Her-2/neu antibody, irrespective of p53 and bcl-2 status, induced apoptosis in all 7 cell lines dose- and time-dependently and correlated with Her-2/neu overexpression. In addition, incubation of cell lines with anti-Her-2/neu antibody did not alter p53 or bcl-2 expression. Anti-HER-2/neu antibody did not induce apoptosis in HER-2/neu negative HBL-100 and HTB-132 cell lines. Our results indicate that within the panel of tested breast cancer cell lines, anti-Her-2/neu antibody-induced apoptosis was independent from the presence of intact p53. © 2001 Cancer Research Campaign http://www.bjcancer.com

Similar content being viewed by others

Targeting HER2-positive breast cancer: advances and future directions

Article 07 November 2022

Pathologic complete response to KEYNOTE522 and HER2-directed therapy for synchronous TNBC and HER2+ breast cancer

Article Open access 28 July 2024

BCL2A1 regulates Canady Helios Cold Plasma-induced cell death in triple-negative breast cancer

Article Open access 08 March 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnson H, Varhaug JE, Akslen LA and Lonning PE (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2: 811–814

    Article  CAS  PubMed  Google Scholar 

  • Beham A, Marin MC, Fernandez A, Herrmann J, Brisbay S, Tari AM, Lopez-Berestein G, Lozano G, Sarkiss M and McDonnell TJ (1997) Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene 15: 2767–2772

    Article  CAS  PubMed  Google Scholar 

  • Bergh J, Norberg T, Sjogren S, Lindgren A and Holmberg L (1995) Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1: 1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Bracey TS, Miller JC, Preece A and Paraskeva C (1995) γ-radiation-induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene 10: 2391–2396

    CAS  PubMed  Google Scholar 

  • Brodowicz T, Wiltschke C, Budinsky AC, Krainer M, Steger GG and Zielinski CC (1997) Soluble HER-2/neu neutralizes biologic effects of anti-HER-2/neu antibody on breast cancer cells in vitro. Int J Cancer 73: 875–879

    Article  CAS  PubMed  Google Scholar 

  • Brodowicz T, Wiltschke C, Kandioler-Eckersberger D, Grunt TW, Rudas M, Schneider SM, Hejna M, Budinsky A and Zielinski CC (1999) Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-alpha and retinoids. Br J Cancer 80: 1350–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM and Wouters BG (1998) Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59: 1391–1399

    Google Scholar 

  • Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR and Kley N (1995) Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377: 646–649

    Article  CAS  PubMed  Google Scholar 

  • Burstein HJ, Kuter I, Campos SM, Gelman RS, Tribou L, Parker LM, Manola J, Younger J, Matulonis U, Bunnell CA, Patridge AH, Richardson PG, Clarke K, Shulman LN and Winer EP (2001) Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 19: 2722–2730

    Article  CAS  PubMed  Google Scholar 

  • Chiou SK, Rao L and White E (1994) Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol 14: 2556–2563, (abstr.)

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Paton V, Shak S, Lieberman G and Slamon DJ (1998) Efficacy and safety of herceptin™ (humanized anti-Her2 antibody) as a single agent in 222 women with Her2 overexpression who relapsed following chemotherapy for metastatic breast cancer. Proc Am Soc Clin Oncol 17: 376a

    Google Scholar 

  • Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G and Slamon DJ (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17: 2639–2648

    Article  CAS  PubMed  Google Scholar 

  • Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J and Francke U (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230: 1132–1139

    Article  CAS  PubMed  Google Scholar 

  • Delia D, Aiello A, Lombardi L, Pelicci PG, Grignani Fr, Grignani Fa, Formelli F, Menard S, Costa A, Veronesi U and Pierotti MA (1993) N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid. Cancer Res 53: 6036–6041

    CAS  PubMed  Google Scholar 

  • Di Leonardo A, Linke SP, Clarkin K and Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cipl in normal human fibroblasts. Genes Dev 8: 2540–2551

    Article  CAS  PubMed  Google Scholar 

  • Dragovich T, Rudin CM and Thompson CB (1998) Signal transduction pathways that regulate cell survival and cell death. Oncogene 17: 3207–3213

    Article  PubMed  Google Scholar 

  • Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262

    Article  CAS  PubMed  Google Scholar 

  • Elledge RM, Gray R, Mansour E, Yu Y, Clark GM and Ravdin P (1995) Accumulation of p53 protein as a possible predictor of response to adjuvant combination chemotherapy with cyclophosphamide, methotrexate, fluorouracil, and prednisone for breast cancer. J Natl Cancer Inst 87: 1254–1256

    Article  CAS  PubMed  Google Scholar 

  • Fornier M, Seidman AD, Esteva FJ, Theodoulou M, Moynahan M, Currie V, Moasser M, Sklarin N, Gilewski T, Surbone A, Denton C, Bacotti D, Willey J, Bach A, Reuter V, Hortobagyi G, Norton L and Hudis C (1999) Weekly herceptin + 1 hour taxol: phase II study in Her2 overexpressing and non-overexpressing metastatic breast cancer. Proc Am Soc Clin Oncol 18: 482a (Abstr.)

    Google Scholar 

  • Harris CC (1996) Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 88: 1442–1455

    Article  CAS  PubMed  Google Scholar 

  • Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, Giovanella BC, Tainsky MA, Bradley A and Donehower LA (1993) In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8: 2457–2467

    CAS  PubMed  Google Scholar 

  • Harwerth IM, Wels W, Marte BM and Hynes NE (1992) Monoclonal antibodies against the extracellular domain of the erbB-2 receptor function as partial ligand agonists. J Biol Chem 267: 15160–15167

    CAS  PubMed  Google Scholar 

  • Harwerth IM, Wels W, Schlegel J, Muller M and Hynes NE (1993) Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumour cell growth. Br J Cancer 68: 1140–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL and Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251

    Article  CAS  PubMed  Google Scholar 

  • Israeli D, Tessler E, Haupt Y, Elkeles A, Wilder S, Amson R, Telerman A and Oren M (1997) A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J 16: 4384–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA and Finkel T (1996) Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93: 11848–11852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandioler-Eckersberger D, Ludwig C, Rudas M, Kappel S, Janschek E, Wenzel C, Schlagbauer-Wadl H, Mittlböck M, Gnant M, Steger G and Jakesz R (2000) TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res 6: 50–56

    CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig RW (1991) Participation of p53 in the cellular response to DNA damage. Cancer Res 51: 6304–6311

    CAS  PubMed  Google Scholar 

  • Kerbel RS (1999) Some recent advances in preclinical aspects of treating cancer by inhibition of tumor angiogenesis. In ASCO Educational Book, 4–7

  • Kerr JFR, Wyllie AH and Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus MH, Popescu NC, Amsbaugh SC and King CR (1987) Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6: 605–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G (1997) The proto-oncogene bcl-2 and its role in regulating apoptosis. Nature Med 3: 614–620

    Article  CAS  PubMed  Google Scholar 

  • Lehman TA, Bennett WP, Metcalf RA, Welsh JA, Ecker J, Modali RV, Ullrich S, Romano JW, Appella E, Testa JR, Gerwin BI and Harris CC (1991) P53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res 51: 4090–4096

    CAS  PubMed  Google Scholar 

  • Lupu R, Colomer R, Zugmaier G, Sarup J, Shepard M, Slamon D and Lippman ME (1990) Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Science 249: 1552–1555

    Article  CAS  PubMed  Google Scholar 

  • Naumovski L and Cleary ML (1996) The p53-binding protein 53BP2 also interacts with bcl2 and impedes cell cycle progression at G2/M. Mol Cell Biol 16: 3884–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton L, Slamon D, Leyland-Jones B, Wolter J, Fleming T, Eiermann W, Baselga J, Mendelsohn J, Bajamonde A, Ash M and Shak S (1999) Overall survival advantage to simultaneous chemotherapy plus the humanized anti-her2 monoclonal antibody herceptin in Her2-overexpressing metastatic breast cancer. Proc Am Soc Clin Oncol 18: 483a(abstr.)

    Google Scholar 

  • O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, Monks A, Sausville EA, Weinstein JN, Friend S, Fornace AJ and Kohn KW (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57: 4285–4300

    PubMed  Google Scholar 

  • Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E and Radinsky R (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15: 3032–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, Baly D, Baughman SA, Twaddell T, Glaspy JA and Slamon DJ (1998) Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 16: 2659–2671

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17: 2941–2953

    Article  CAS  PubMed  Google Scholar 

  • Sarkis AS, Bajorin DF, Reuter VE, Herr HW, Netto G, Zhang ZF, Schultz PK, Cordon-Cardo C and Scher HI (1995) Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J Clin Oncol 13: 1384–1390

    Article  CAS  PubMed  Google Scholar 

  • Shao ZM, Dawson MI, Li XS, Rishi AK, Sheikh MS, Han QX, Ordonez JV, Shroot B and Fontana JA (1995) p53 independent G0G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene 11: 493–504

    CAS  PubMed  Google Scholar 

  • Sionov RV and Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18: 6145–6157

    Article  CAS  PubMed  Google Scholar 

  • Slamon D, Leyland-Jones B, Shak S, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Baselga J and Norton L (1998) Addition of herceptin™ to first line chemotherapy for Her2 overexpressing metastatic breast cancer markedly increases anticancer activity: a randomized, multinational controlled phase III trial. Proc Am Soc Clin Oncol 17: 377a(Abstr.)

    Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J and Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpress HER2. N Engl J Med 344: 783–792

    Article  CAS  PubMed  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Constantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM and Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446

    Article  CAS  PubMed  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Thor AD, Moore DH, Edgerton SM, Kawasaki ES, Reihsaus E, Lynch HT, Marcus JN, Schwartz L, Chen LC, Mayall BH and Smith HS (1992) Accumulation of p53 tumor suppressor gene protein: an independent marker of prognosis in breast cancers. J Natl Cancer Inst 84: 845–855

    Article  CAS  PubMed  Google Scholar 

  • Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L and Debussche L (1998) The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J 17: 4668–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl AF, Donaldson KL, Fairchild C, Lee FY, Foster SA, Demers GW and Galloway DA (1996) Loss of normal p53 function confers to sensitization to Taxol by increasing G2/M arrest and apoptosis. Na Med 2: 72–79

    Article  CAS  Google Scholar 

  • Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers JH and Harris CC (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10: 1219–1232

    Article  CAS  PubMed  Google Scholar 

  • Wu GS, Burns TF, McDonald ER 3rd, Meng RD, Kao G, Muschel R, Yen T and EI Deiry WS (1999) Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene 18: 6411–6418

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R and Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Knudson CM, Korsmeyer SJ and Van Dyke T (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640

    Article  CAS  PubMed  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A and Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347

    Article  CAS  PubMed  Google Scholar 

  • Zha H and Reed JC (1997) Heterodimerization-independent functions of cell death regulatory proteins bax and bcl-2 in yeast and mammalian cells. J Biol Chem 272: 31482–31488

    Article  CAS  PubMed  Google Scholar 

  • Zhang CC, Yang JM, White E, Murphy M, Levine A and Hait WN (1998) The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene 16: 1617–1624

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Clinical Division of Oncology, Vienna, Austria

    T Brodowicz, S Tomek, R Kunstfeld, W Koestler, M Hejna, A Budinsky, C Wiltschke & C C Zielinski

  2. Department of Medicine I, Experimental Oncology, Vienna, Austria

    C C Zielinski

  3. Clinical Division of General Surgery, Department of Surgery, Vienna, Austria

    D Kandioler & C Ludwig

  4. Clinical Division of Clinical Pathology, Department of Pathology, University Hospital, Vienna, Austria

    M Rudas

  5. Ludwig Boltzmann Institute for Clinical Experimental Oncology, Vienna, Austria

    C C Zielinski

Authors
  1. T Brodowicz
    View author publications

    Search author on:PubMed Google Scholar

  2. D Kandioler
    View author publications

    Search author on:PubMed Google Scholar

  3. S Tomek
    View author publications

    Search author on:PubMed Google Scholar

  4. C Ludwig
    View author publications

    Search author on:PubMed Google Scholar

  5. M Rudas
    View author publications

    Search author on:PubMed Google Scholar

  6. R Kunstfeld
    View author publications

    Search author on:PubMed Google Scholar

  7. W Koestler
    View author publications

    Search author on:PubMed Google Scholar

  8. M Hejna
    View author publications

    Search author on:PubMed Google Scholar

  9. A Budinsky
    View author publications

    Search author on:PubMed Google Scholar

  10. C Wiltschke
    View author publications

    Search author on:PubMed Google Scholar

  11. C C Zielinski
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Brodowicz, T., Kandioler, D., Tomek, S. et al. Anti-Her-2/neu antibody induces apoptosis in Her-2/neu overexpressing breast cancer cells independently from p53 status. Br J Cancer 85, 1764–1770 (2001). https://doi.org/10.1054/bjoc.2001.2197

Download citation

  • Received: 27 March 2001

  • Revised: 02 October 2001

  • Accepted: 04 October 2001

  • Published: 27 November 2001

  • Issue date: 01 December 2001

  • DOI: https://doi.org/10.1054/bjoc.2001.2197

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • apoptosis
  • Bcl-2
  • breast cancer
  • HER-2/neu
  • p53

This article is cited by

  • Intratumoral delivery of recombinant vaccinia virus encoding for ErbB2/Neu inhibits the growth of salivary gland carcinoma cells

    • Laura Masuelli
    • Massimo Fantini
    • Roberto Bei

    Journal of Translational Medicine (2014)

  • Gene expression profile and response to trastuzumab–docetaxel-based treatment in breast carcinoma

    • F Végran
    • R Boidot
    • S Lizard-Nacol

    British Journal of Cancer (2009)

  • Deciphering downstream gene targets of PI3K/mTOR/p70S6K pathway in breast cancer

    • Henna Heinonen
    • Anni Nieminen
    • Outi Monni

    BMC Genomics (2008)

  • Anti-tumor immunity induced by an anti-idiotype antibody mimicking human Her-2/neu

    • Kartik Mohanty
    • Asim Saha
    • Malaya Bhattacharya-Chatterjee

    Breast Cancer Research and Treatment (2007)

  • The efficacy of trastuzumab in Her-2/neu-overexpressing metastatic breast cancer is independent of p53 status

    • Wolfgang J. Köstler
    • Thomas Brodowicz
    • Christoph C. Zielinski

    Journal of Cancer Research and Clinical Oncology (2005)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited