Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Restoring DNA repair capacity of cells from three distinct diseases by XPD gene-recombinant adenovirus

Abstract

The nucleotide excision repair (NER) is one of the major human DNA repair pathways. Defects in one of the proteins that act in this system result in three distinct autosomal recessive syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). TFIIH is a nine-protein complex essential for NER activity, initiation of RNA polymerase II transcription and with a possible role in cell cycle regulation. XPD is part of the TFIIH complex and has a helicase function, unwinding the DNA in the 5′ → 3′ direction. Mutations in the XPD gene are found in XP, TTD and XP/CS patients, the latter exhibiting both XP and CS symptoms. Correction of DNA repair defects of these cells by transducing the complementing wild-type gene is one potential strategy for helping these patients. Over the last years, adenovirus vectors have been largely used in gene delivering because of their efficient transduction, high titer, and stability. In this work, we present the construction of a recombinant adenovirus carrying the XPD gene, which is coexpressed with the EGFP reporter gene by an IRES sequence, making it easier to follow cell infection. Infection by this recombinant adenovirus grants full correction of SV40-transformed and primary skin fibroblasts obtained from XP-D, TTD and XP/CS patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Tuteja N, Tuteja R . Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect. Crit Rev Biochem Mol Biol. 2001;36:261–290.

    Article  CAS  PubMed  Google Scholar 

  2. Hanawalt PC . Transcription-coupled repair and human disease. Science. 1994;266:1957–1958.

    Article  CAS  PubMed  Google Scholar 

  3. Moriwaki S, Kraemer KH . Xeroderma pigmentosum — bridging a gap between clinic and laboratory. Photodermatol Photoimmunol Photomed. 2001;17:47–54.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor EM, Lehmann AR . Conservation of eukaryotic DNA repair mechanisms. Int J Radiat Biol. 1998;74:277–286.

    Article  CAS  PubMed  Google Scholar 

  5. Berneburg M, Lowe JE, Nardo T, et al. UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO J. 2000;19:1157–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Costa RMA, Chiganças V, Galhardo RS, et al. The eukaryotic nucleotide excision repair pathway. Biochimie. 2003;85:1083–1099.

    Article  CAS  PubMed  Google Scholar 

  7. van Hoffen A, Balajee AS, van Zeeland AA, et al. Nucleotide excision repair and its interplay with transcription. Toxicology. 2003;193:79–90.

    Article  CAS  PubMed  Google Scholar 

  8. Benhamou S, Sarasin A . ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis. 2002;17:463–469.

    Article  CAS  PubMed  Google Scholar 

  9. Schaeffer L, Moncollin V, Roy R, Staub A, et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 1994;13:2388–2392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roy R, Adamczewski JP, Seroz T, et al. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell. 1994;79:1093–1101.

    Article  CAS  PubMed  Google Scholar 

  11. Friedberg EC . Hot news: temperature-sensitive humans explain hereditary disease. Bioessays. 2001;23:671–673.

    Article  CAS  PubMed  Google Scholar 

  12. Coin F, Marinoni JC, Rodolfo C, et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet. 1998;20:184–188.

    Article  CAS  PubMed  Google Scholar 

  13. Keriel A, Stary A, Sarasin A, et al. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell. 2002;109:125–135.

    Article  CAS  PubMed  Google Scholar 

  14. Cleaver JE, Thompson LH, Richardson AS, et al. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat. 1999;14:9–22.

    Article  CAS  PubMed  Google Scholar 

  15. Kraemer KH, Herlyn M, Yuspa SH, et al. Reduced DNA repair in cultured melanocytes and nevus cells from a patient with xeroderma pigmentosum. Arch Dermatol. 1989;125:263–268.

    Article  CAS  PubMed  Google Scholar 

  16. Kraemer KH, Levy DD, Parris CN, et al. Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer. J Invest Dermatol. 1994;103:S96–S101.

    Article  Google Scholar 

  17. Stary A, Sarasin A . The genetics of the hereditary xeroderma pigmentosum syndrome. Biochimie. 2002;84:49–60.

    Article  CAS  PubMed  Google Scholar 

  18. de Boer J, Hoeijmakers JH . Nucleotide excision repair and human syndromes. Carcinogenesis. 2000;21:453–460.

    Article  CAS  PubMed  Google Scholar 

  19. Bootsma D, Kraemer KH, Cleaver JE, et al. Nucleotide excision repair syndrome: xeroderma pigmentosum, Cockayne syndromes, and trichothiodystrophy. In: Vogelstein B, Kinzler KW, eds. The Genetics Basis of Human Cancer. New York, NY: McGraw-Hill; 1998: 245–274.

    Google Scholar 

  20. Nance MA, Berry SA . Cockayne syndrome: review of 140 cases. Am J Med Genet. 1992;42:68–84.

    Article  CAS  PubMed  Google Scholar 

  21. Itin PH, Pittelkow MR . Trichothiodystrophy: review of sulfur-deficient brittle hair syndromes and association with the ectodermal dysplasias. J Am Acad Dermatol. 1990;22:705–717.

    Article  CAS  PubMed  Google Scholar 

  22. Lehmann AR . The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 2001;15:15–23.

    Article  CAS  PubMed  Google Scholar 

  23. Queille S, Drougard C, Sarasin A, et al. Effects of XPD mutations on ultraviolet-induced apoptosis in relation to skin cancer-proneness in repair-deficient syndromes. J Invest Dermatol. 2001;117:1162–1170.

    Article  CAS  PubMed  Google Scholar 

  24. Lehmann AR, Thompson AF, Harcourt SA, et al. Cockayne's syndrome: correlation of clinical features with cellular sensitivity of RNA synthesis to UV irradiation. J Med Genet. 1993;30:679–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stefanini M, Lagomarsini P, Giliani S, et al. Genetic heterogeneity of the excision repair defect associated with trichothiodystrophy. Carcinogenesis. 1993;14:1101–1105.

    Article  CAS  PubMed  Google Scholar 

  26. Stefanini M, Vermeulen W, Weeda G, et al. A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy. Am J Hum Genet. 1993;4:817–821.

    Google Scholar 

  27. Vermeulen W, van Vuuren AJ, Chipoulet M, et al. Three unusual repair deficiencies associated with transcription factor BTF2(TFIIH): evidence for the existence of a transcription syndrome. Cold Spring Harb Symp Quant Biol. 1994;59:317–329.

    Article  CAS  PubMed  Google Scholar 

  28. de Boer J, de Witt J, van Steeg H, et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol Cell. 1998;1:981–990.

    Article  CAS  PubMed  Google Scholar 

  29. Carreau M, Quilliet X, Eveno E, et al. Functional retroviral vector for gene therapy of xeroderma pigmentosum group D patients. Hum Gene Ther. 1995;6:1307–1315.

    Article  CAS  PubMed  Google Scholar 

  30. Quilliet X, Chevallier-Lagente O, Eveno E, et al. Long-term complementation of DNA repair deficient human primary fibroblasts by retroviral transduction of the XPD gene. Mutat Res. 1996;364:161–169.

    Article  CAS  PubMed  Google Scholar 

  31. Zeng L, Quilliet X, Chevallier-Lagente O, et al. Retrovirus-mediated gene transfer corrects DNA repair defect of xeroderma pigmentosum cells of complementation groups A, B and C. Gene Therapy. 1997;4:1077–1084.

    Article  CAS  PubMed  Google Scholar 

  32. Marchetto MCN, Muotri AR, Magalhães GS, et al. The EGFP recombinant adenovirus: an example of efficient gene delivery and expression in human cells. Virus Rev Res. 2001;6:23–33.

    Article  Google Scholar 

  33. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery. Curr Opin Biotechnol. 1999;10:440–447.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–358.

    Article  CAS  PubMed  Google Scholar 

  35. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;17:415–419.

    Article  Google Scholar 

  36. Williams DA, Baum C . Gene therapy — new challenges ahead. Science. 2003;302:400–401.

    Article  CAS  PubMed  Google Scholar 

  37. Muotri AR, Marchetto MCN, Zerbini LFC, et al. Complementation of the DNA repair deficiency in human xeroderma pigmentosum group A and C cells by recombinant adenovirus-mediated gene transfer. Hum Gene Ther. 2002;13:1833–1844.

    Article  CAS  PubMed  Google Scholar 

  38. Itin PH, Sarasin A, Pittelkow MR . Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol. 2001;44:891–920.

    Article  CAS  PubMed  Google Scholar 

  39. Coin F, Bergmann E, Tremeau-Bavard A, et al. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 1999;18:1357–1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jackson RJ, Howell MT, Kaminski A . The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci. 1990;15:477–483.

    Article  PubMed  Google Scholar 

  41. Graham FL, Prevec L . Manipulation of adenovirus vectors. In: Murray EJ, ed. Methods in Molecular Biology. Clifton, NJ: The Humana Press Inc; 1991: 109–128.

    Google Scholar 

  42. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol. 1996;70:7498–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sambrook J, Russel DW . Molecular Cloning: A Laboratory Manual. New York, NY: Cold Spring Harbour Laboratory Press; 2001.

    Google Scholar 

  44. Cleaver JE, Thomas GH . DNA repair: a laboratory manual of research procedures. In: Friedberg EC, Hanawalt PC, eds. Measurement of Unscheduled Synthesis by Autoradiography. New York, NY: Marcel Dekker, Inc; 1981: 227–287.

    Google Scholar 

  45. Berneburg M, Lehmann AR . Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv Genet. 2001;43:71–102.

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Larochelle S, Xiaoming L, et al. Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature. 2003;424:228–232.

    Article  CAS  PubMed  Google Scholar 

  47. Muotri AR, Marchetto MCN, Suzuki MF, et al. Low amounts of the DNA repair XPA protein are sufficient to recover UV-resistance. Carcinogenesis. 2002;23:1039–1046.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson RT, Squires S . The XP-D complementation group. Insigth into xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy. Mutat Res. 1992;273:97–118.

    Article  CAS  PubMed  Google Scholar 

  49. van Hoffen A, Kalle WH, Jong-Versteeg A, Lehmann AR, Zeeland AA, Mullenders LH . Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription. Nucleic Acids Res. 1999;27:2898–2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Broughton BC, Steingrimsdottir H, Webber C, et al. Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nat Genet. 1994;7:189–194.

    Article  CAS  PubMed  Google Scholar 

  51. Taylor EM, Broughton BC, Botta E, et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci USA. 1997;94:8658–8663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berg RJ, de Vries A, van Steeg H, et al. Relative susceptibilities of XPA knockout mice and their heterozygous and wild-type littermates to UVB-induced skin cancer. Cancer Res. 1997;15:581–584.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (São Paulo, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil) and CAPES-COFECUB (Brasilia; Brazil/Aix en Provence, France). MGA and KMLB have PhD fellowships from FAPESP. We thank Drs CFP Lofti (University of Sao Paulo, SP, Brazil), A Lehmann (MRC, Brighton, UK) and EC Friedberg (University of Texas Southwestern Medical Center at Dallas, TX) for providing some of the cell lines used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Frederico Martins Menck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armelini, M., Muotri, A., Marchetto, M. et al. Restoring DNA repair capacity of cells from three distinct diseases by XPD gene-recombinant adenovirus. Cancer Gene Ther 12, 389–396 (2005). https://doi.org/10.1038/sj.cgt.7700797

Download citation

  • Received:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700797

Keywords

This article is cited by

Search

Quick links