Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Experimental & Molecular Medicine
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. experimental & molecular medicine
  3. articles
  4. article
The parathyroid hormone-2 receptor: current status
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 01 March 1997

The parathyroid hormone-2 receptor: current status

  • Ted B Usdin1 

Experimental & Molecular Medicine volume 29, pages 13–17 (1997)Cite this article

  • 834 Accesses

  • 3 Altmetric

  • Metrics details

Abstract

G-protein coupled receptors form a large superfamily of plasma membrane proteins which serve a variety of signal transduction roles. New receptors continue to be identified. Based on sequence homology the superfamily can currently be divided into three families, the rhodopsin family which includes the vast majority of identified receptors, and the secretin. and metabotropic glutamate receptor families which share a general architecture with each other and the rhodopsin family but no obvious sequence identity. Screening for additional members of the secretin family led to the identification of the parathyroid hormone-2 (PTH2) receptor. Ligand recognition by the PTH2 receptor partially overlaps that of the PTH/parathyroid hormone-related peptide (PTHrP) receptor. This has facilitated structure-function analysis of ligands for these receptors. The physiological role of the PTH2 receptor is under investigation but its distribution suggests that it may be a neurotransmitter receptor and could participate in modulation of a number of organ systems. The relative abundance of PTH2 receptor mRNA in the brain and the inability to detect mRNA encoding PTH, its only currently identified ligand, suggest the existence of another endogenous ligand, for which evidence has recently been obtained.

Similar content being viewed by others

Fast-diffusing receptor collisions with slow-diffusing peptide ligand assemble the ternary parathyroid hormone–GPCR–arrestin complex

Article Open access 03 December 2024

Molecular recognition of two endogenous hormones by the human parathyroid hormone receptor-1

Article 08 December 2022

Prolonging parathyroid hormone analog action in vitro and in vivo through peptide lipidation

Article Open access 14 May 2025

Article PDF

Author information

Authors and Affiliations

  1. Section on Genetics, National Institute of Mental Health, Bethesda, Maryland, 20892, U.S.A.

    Ted B Usdin

Authors
  1. Ted B Usdin
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Usdin, T. The parathyroid hormone-2 receptor: current status. Exp Mol Med 29, 13–17 (1997). https://doi.org/10.1038/emm.1997.2

Download citation

  • Published: 01 March 1997

  • Issue date: 01 March 1997

  • DOI: https://doi.org/10.1038/emm.1997.2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • parathyroid hormone
  • receptors
  • G-protein
  • neurotransmitters
  • brain
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Special Feature
  • Journal Information
  • About the Editors
  • About the Partner
  • Contact
  • For Advertisers
  • Press Releases
  • Open Access Fees and Funding

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Experimental & Molecular Medicine (Exp Mol Med)

ISSN 2092-6413 (online)

ISSN 1226-3613 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited