Abstract
Purpose
To review the ability of current imaging technologies to provide estimates of rates of structural change in glaucoma patients.
Patients and methods
Review of literature.
Results
Imaging technologies, such as confocal scanning laser ophthalmoscopy (CSLO), scanning laser polarimetry (SLP), and optical coherence tomography (OCT), provide quantifiable and reproducible measurements of the optic disc and parapapillary retinal nerve fibre layer (RNFL). Rates of change as quantified by the rim area (RA) (for CSLO) and RNFL thickness (for SLP and OCT) are related to glaucoma progression as detected by conventional methods (eg, visual fields and optic disc photography). Evidence shows that rates of RNFL and RA loss are significantly faster in progressing compared with non-progressing glaucoma patients.
Conclusion
Measurements of rates of optic disc and RNFL change are becoming increasingly precise and individualized. Currently available imaging technologies have the ability to detect and quantify progression in glaucoma, and their measurements may be suitable end points in glaucoma clinical trials.
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Weinreb RN, Khaw PT . Primary open-angle glaucoma. Lancet 2004; 363 (9422): 1711–1720.
Medeiros FA, Susanna R, Singh K . Who should be treated? In: Weinreb RN, Araie M, Susanna R, Goldberg I, Migdal C, Liebmann J (eds). Medical Treatment of Glaucoma. Kugler Publications: Amsterdam/The Netherlands, 2010, pp 1–19.
Nicolela MT, McCormick TA, Drance SM, Ferrier SN, LeBlanc RP, Chauhan BC . Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. Ophthalmology 2003; 110 (11): 2178–2184.
Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005; 123 (4): 464–470.
Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP . Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 2001; 119 (10): 1492–1499.
Harwerth RS, Wheat JL, Fredette MJ, Anderson DR . Linking structure and function in glaucoma. Prog Retin Eye Res 2010; 29 (4): 249–271.
Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN . Prediction of functional loss in glaucoma from progressive optic disc damage. Arch Ophthalmol 2009; 127 (10): 1250–1256.
Greenfield DS, Weinreb RN . Role of optic nerve imaging in glaucoma clinical practice and clinical trials. Am J Ophthalmol 2008; 145 (4): 598–603.
Dreher AW, Tso PC, Weinreb RN . Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner. Am J Ophthalmol 1991; 111 (2): 221–229.
Mohammadi K, Bowd C, Weinreb RN, Medeiros FA, Sample PA, Zangwill LM . Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol 2004; 138 (4): 592–601.
Medeiros FA, Zangwill LM, Bowd C, Weinreb RN . Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004; 122 (6): 827–837.
Medeiros FA, Zangwill LM, Bowd C, Mohammadi K, Weinreb RN . Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol 2004; 122 (5): 698–704.
Zangwill LM, Weinreb RN, Beiser JA, Berry CC, Cioffi GA, Coleman AL et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123 (9): 1188–1197.
Alencar LM, Bowd C, Weinreb RN, Zangwill LM, Sample PA, Medeiros FA . Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. Invest Ophthalmol Vis Sci 2008; 49 (5): 1898–1906.
Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Sample PA, Girkin CA et al. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest Ophthalmol Vis Sci 2010; 51 (7): 3531–3539.
Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Vizzeri G, Sample PA et al. Agreement for detecting glaucoma progression with the GDx guided progression analysis, automated perimetry, and optic disc photography. Ophthalmology 2010; 117 (3): 462–470.
Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Vizzeri G, Sample PA et al. Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 2009; 50 (4): 1675–1681.
Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Susanna Jr R, Weinreb RN . Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation. Am J Ophthalmol 2009; 148 (1): 155–163, e151.
Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Weinreb RN . The Relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology 2009; 116 (6): 1125–1133, e1121–1123.
Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna Jr R et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci 2009; 50 (12): 5741–5748.
Medeiros FA, Zangwill LM, Alencar LM, Sample PA, Weinreb RN . Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry. Am J Ophthalmol 2010; 149 (6): 908–915.
Strouthidis NG, Scott A, Peter NM, Garway-Heath DF . Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci 2006; 47 (7): 2904–2910.
Tan JC, Hitchings RA . Approach for identifying glaucomatous optic nerve progression by scanning laser tomography. Invest Ophthalmol Vis Sci 2003; 44 (6): 2621–2626.
Tan JC, Hitchings RA . Optimizing and validating an approach for identifying glaucomatous change in optic nerve topography. Invest Ophthalmol Vis Sci 2004; 45 (5): 1396–1403.
Weinreb RN, Zangwill LM, Jain S, Becerra LM, Dirkes K, Piltz-Seymour JR et al. Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to theOcular Hypertension Treatment Study. Ophthalmology 2010; 117 (9): 1674–1683.
Chauhan BC, Blanchard JW, Hamilton DC, LeBlanc RP . Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci 2000; 41 (3): 775–782.
Strouthidis NG, White ET, Owen VM, Ho TA, Hammond CJ, Garway-Heath DF . Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements. Br J Ophthalmol 2005; 89 (11): 1427–1432.
Tan JC, Garway-Heath DF, Hitchings RA . Variability across the optic nerve head in scanning laser tomography. Br J Ophthalmol 2003; 87 (5): 557–559.
Bowd C, Weinreb RN, Lee B, Emdadi A, Zangwill LM . Optic disk topography after medical treatment to reduce intraocular pressure. Am J Ophthalmol 2000; 130 (3): 280–286.
Chauhan BC, Hutchison DM, Artes PH, Caprioli J, Jonas JB, LeBlanc RP et al. Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study. Invest Ophthalmol Vis Sci 2009; 50 (4): 1682–1691.
Chauhan BC, Nicolela MT, Artes PH . Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology 2009; 116 (11): 2110–2118.
Fayers T, Strouthidis NG, Garway-Heath DF . Monitoring glaucomatous progression using a novel Heidelberg Retina Tomograph event analysis. Ophthalmology 2007; 114 (11): 1973–1980.
See JL, Nicolela MT, Chauhan BC . Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls. Ophthalmology 2009; 116 (5): 840–847.
Zangwill LM, Weinreb RN, Berry CC, Smith AR, Dirkes KA, Liebmann JM et al. The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study: study design and baseline factors. Am J Ophthalmol 2004; 137 (2): 219–227.
Strouthidis NG, Gardiner SK, Sinapis C, Burgoyne CF, Garway-Heath DF . The spatial pattern of neuroretinal rim loss in ocular hypertension. Invest Ophthalmol Vis Sci 2009; 50 (8): 3737–3742.
Poli A, Strouthidis NG, Ho TA, Garway-Heath DF . Analysis of HRT images: comparison of reference planes. Invest Ophthalmol Vis Sci 2008; 49 (9): 3970–3975.
Topouzis F, Peng F, Kotas-Neumann R, Garcia R, Sanguinet J, Yu F et al. Longitudinal changes in optic disc topography of adult patients after trabeculectomy. Ophthalmology 1999; 106 (6): 1147–1151.
Lesk MR, Spaeth GL, Azuara-Blanco A, Araujo SV, Katz LJ, Terebuh AK et al. Reversal of optic disc cupping after glaucoma surgery analyzed with a scanning laser tomograph. Ophthalmology 1999; 106 (5): 1013–1018.
Bowd C, Balasubramanian M, Weinreb RN, Vizzeri G, Alencar LM, O’Leary N et al. Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression. Invest Ophthalmol Vis Sci 2009; 50 (2): 691–701.
Medeiros FA, Weinreb RN . Visual field progression. Ophthalmology 2010; 117 (4): 851–852; author reply 852.
Strouthidis NG, Demirel S, Asaoka R, Cossio-Zuniga C, Garway-Heath DF . The Heidelberg retina tomograph Glaucoma Probability Score: reproducibility and measurement of progression. Ophthalmology 2010; 117 (4): 724–729.
DeLeon Ortega JE, Sakata LM, Kakati B, McGwin Jr G, Monheit BE, Arthur SN et al. Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. Invest Ophthalmol Vis Sci 2007; 48 (3): 1156–1163.
Patterson AJ, Garway-Heath DF, Strouthidis NG, Crabb DP . A new statistical approach for quantifying change in series of retinal and optic nerve head topography images. Invest Ophthalmol Vis Sci 2005; 46 (5): 1659–1667.
O’Leary N, Crabb DP, Mansberger SL, Fortune B, Twa MD, Lloyd MJ et al. Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomograph images. Arch Ophthalmol 2010; 128 (5): 560–568.
Knighton RW, Huang X, Zhou Q . Microtubule contribution to the reflectance of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci 1998; 39 (1): 189–193.
Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991; 109 (1): 77–83.
Weinreb RN, Zangwill L, Berry CC, Bathija R, Sample PA . Detection of glaucoma with scanning laser polarimetry. Arch Ophthalmol 1998; 116 (12): 1583–1589.
Tjon-Fo-Sang MJ, Lemij HG . The sensitivity and specificity of nerve fiber layer measurements in glaucoma as determined with scanning laser polarimetry. Am J Ophthalmol 1997; 123 (1): 62–69.
Kogure S, Iijima H, Tsukahara S . A new parameter for assessing the thickness of the retinal nerve fiber layer for glaucoma diagnosis. Eur J Ophthalmol 1999; 9 (2): 93–98.
Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001; 42 (9): 1993–2003.
Fabre K, Michiels I, Zeyen T . The sensitivity and specificity of TOP, FDP and GDX in screening for early glaucoma. Bull Soc Belge Ophtalmol 2000; 275: 17–23.
Trible JR, Schultz RO, Robinson JC, Rothe TL . Accuracy of scanning laser polarimetry in the diagnosis of glaucoma. Arch Ophthalmol 1999; 117 (10): 1298–1304.
Bowd C, Medeiros FA, Weinreb RN, Zangwill LM . The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 2007; 48 (1): 223–227.
Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN . Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci 2007; 48 (7): 3146–3153.
Toth M, Hollo G . Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol 2005; 89 (9): 1139–1142.
Da Pozzo S, Iacono P, Marchesan R, Minutola D, Ravalico G . The effect of ageing on retinal nerve fibre layer thickness: an evaluation by scanning laser polarimetry with variable corneal compensation. Acta Ophthalmol Scand 2006; 84 (3): 375–379.
Grewal DS, Sehi M, Greenfield DS . Detecting glaucomatous progression using GDx with variable and enhanced corneal compensation using Guided Progression Analysis. Br J Ophthalmol 2010 (e-pub ahead of print 22 July 2010; doi:10.1136/bjo.2010.180810).
Grewal DS, Sehi M, Greenfield DS . Comparing rates of retinal nerve fibre layer loss with GDxECC using different methods of visual-field progression. Br J Ophthalmol 2010 (e-pub ahead of print 9 September 2010; doi:10.1136/bjo.2010.183483).
Jonas JB, Fernandez MC, Sturmer J . Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 1993; 100 (1): 63–68.
Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS . Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol 2005; 139 (1): 39–43.
Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna Jr R, Weinreb RN . Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005; 139 (1): 44–55.
Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010; 51 (1): 217–222.
Vizzeri G, Bowd C, Medeiros FA, Weinreb RN, Zangwill LM . Effect of improper scan alignment on retinal nerve fiber layer thickness measurements using Stratus optical coherence tomograph. J Glaucoma 2008; 17 (5): 341–349.
Cheung CY, Leung CK, Lin D, Pang CP, Lam DS . Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography. Ophthalmology 2008; 115 (8): 1347–1351, 1351, e1341–1342.
Gonzalez-Garcia AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN . Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol 2009; 147 (6): 1067–1074, 1074, e1061.
Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005; 112 (10): 1734–1746.
Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA . Comparison of Different Spectral Domain Optical Coherence Tomography Scanning Areas for Glaucoma Diagnosis. Ophthalmology 2010; 117 (9): 1692–1699.
Weinreb RN, Kaufman PL . The glaucoma research community and FDA look to the future: a report from the NEI/FDA CDER Glaucoma Clinical Trial Design and Endpoints Symposium. Invest Ophthalmol Vis Sci 2009; 50 (4): 1497–1505.
Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120 (6): 701–713; discussion 829–730.
Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I . Results of the European Glaucoma Prevention Study. Ophthalmology 2005; 112 (3): 366–375.
Drance SM . The Collaborative Normal-Tension Glaucoma Study and some of its lessons. Can J Ophthalmol 1999; 34 (1): 1–6.
Katz J, Congdon N, Friedman DS . Methodological variations in estimating apparent progressive visual field loss in clinical trials of glaucoma treatment. Arch Ophthalmol 1999; 117 (9): 1137–1142.
Acknowledgements
This study was supported, in part, by NEI R01-EY08208 (FAM) and CAPES Grant BEX1327/09-7 (MTL).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
K Mansouri, none; MT Leite, none; FA Medeiros, Carl Zeiss Meditec Inc. (F, R), Alcon (C, R), Allergan (C, F), Merck (C, F), Pfizer Inc. (C, F, R), and Reichert Inc. (R); RN Weinreb, Carl Zeiss Meditec Inc. (C, F); Heidelberg Engineering, GmbH (F); Optovue Inc. (C, F); and Topcon Medical Systems Inc. (F, R).
Rights and permissions
About this article
Cite this article
Mansouri, K., Leite, M., Medeiros, F. et al. Assessment of rates of structural change in glaucoma using imaging technologies. Eye 25, 269–277 (2011). https://doi.org/10.1038/eye.2010.202
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/eye.2010.202
Keywords
This article is cited by
-
Comparison of retinal nerve fiber layer thickness and Bruch’s membrane opening minimum rim width thinning rate in open-angle glaucoma
Scientific Reports (2022)
-
Evaluation of the external validity of a joint structure–function model for monitoring glaucoma progression
Scientific Reports (2020)
-
The Northern Finland Birth Cohort Eye Study: Design and baseline characteristics
BMC Ophthalmology (2013)
-
Advances in the Structural Evaluation of Glaucoma with Optical Coherence Tomography
Current Ophthalmology Reports (2013)
-
Strukturelle Diagnostik der Verlaufsbeobachtung der Glaukome
Der Ophthalmologe (2013)