Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of copy number variation in the FCGR3B gene with risk of autoimmune diseases

Abstract

Copy number variation (CNV) in the human genome is an important determinant of susceptibility to autoimmune diseases. Many autoimmune diseases share similar clinical and pathogenic features. Thus, CNVs of genes involved in immunity may serve as shared determinants of multiple autoimmune diseases. Here, we determined the association between CNV in the gene encoding FCGR3B with the risk of developing autoimmune diseases and whether the observed associations are modified by the CNV in CCL3L1 (CC chemokine ligand 3-like 1), a gene encoding a potent chemokine. In a cross-sectional study of 774 subjects, we estimated FCGR3B and CCL3L1 gene copy number in 146, 158 and 61 subjects with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and primary Sjögren's syndrome (SS), respectively, and 409 healthy controls. The median gene dose of FCGR3B in the study population was two. FCGR3B copy number < or >2 was associated with an increased risk of SLE and primary SS but not RA. This association was mostly evident in subjects who also had two copies of CCL3L1. Thus, our data suggest that epistatic interactions between CNV of FCGR3B and CCL3L1, two immune response genes, may influence phenotypically related autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S et al. Recent segmental duplications in the human genome. Science 2002; 297: 1003–1007.

    Article  CAS  Google Scholar 

  2. Conrad B, Antonarakis SE . Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet 2007; 8: 17–35.

    Article  CAS  Google Scholar 

  3. Nguyen DQ, Webber C, Ponting CP . Bias of selection on human copy-number variants. PLoS Genet 2006; 2: e20.

    Article  Google Scholar 

  4. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454.

    Article  CAS  Google Scholar 

  5. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005; 307: 1434–1440.

    Article  CAS  Google Scholar 

  6. Gornalusse G, Mummidi S, He W, Silvestri G, Bamshad M, Ahuja SK . CCL3L copy number variation and the co-evolution of primate and viral genomes. PLoS Genet 2009; 5: e1000359.

    Article  Google Scholar 

  7. Kuhn L, Schramm DB, Donninger S, Meddows-Taylor S, Coovadia AH, Sherman GG et al. African infants’ CCL3 gene copies influence perinatal HIV transmission in the absence of maternal nevirapine. AIDS 2007; 21: 1753–1761.

    Article  CAS  Google Scholar 

  8. Meddows-Taylor S, Donninger SL, Paximadis M, Schramm DB, Anthony FS, Gray GE et al. Reduced ability of newborns to produce CCL3 is associated with increased susceptibility to perinatal human immunodeficiency virus 1 transmission. J Gen Virol 2006; 87 (Pt 7): 2055–2065.

    Article  CAS  Google Scholar 

  9. Shostakovich-Koretskaya L, Catano G, Chykarenko ZA, He W, Gornalusse G, Mummidi S et al. Combinatorial content of CCL3L and CCL4L gene copy numbers influence HIV-AIDS susceptibility in Ukrainian children. AIDS 2009; 23: 679–688.

    PubMed  PubMed Central  Google Scholar 

  10. Burns JC, Shimizu C, Gonzalez E, Kulkarni H, Patel S, Shike H et al. Genetic variations in the receptor-ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease. J Infect Dis 2005; 192: 344–349.

    Article  CAS  Google Scholar 

  11. Mamtani M, Rovin B, Brey R, Camargo JF, Kulkarni H, Herrera M et al. CCL3L1 gene-containing segmental duplications and polymorphisms in CCR5 affect risk of systemic lupus erythaematosus. Ann Rheum Dis 2008; 67: 1076–1083.

    Article  CAS  Google Scholar 

  12. McKinney C, Merriman ME, Chapman PT, Gow PJ, Harrison AA, Highton J et al. Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis 2008; 67: 409–413.

    Article  CAS  Google Scholar 

  13. Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 2007; 39: 721–723.

    Article  CAS  Google Scholar 

  14. Breunis WB, van Mirre E, Bruin M, Geissler J, de Boer M, Peters M et al. Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenic purpura. Blood 2008; 111: 1029–1038.

    Article  CAS  Google Scholar 

  15. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851–855.

    Article  CAS  Google Scholar 

  16. Coxon A, Cullere X, Knight S, Sethi S, Wakelin MW, Stavrakis G et al. Fc gamma RIII mediates neutrophil recruitment to immune complexes. A mechanism for neutrophil accumulation in immune-mediated inflammation. Immunity 2001; 14: 693–704.

    Article  CAS  Google Scholar 

  17. Takai T . Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2002; 2: 580–592.

    Article  CAS  Google Scholar 

  18. Anaya JM, Gomez L, Castiblanco J . Is there a common genetic basis for autoimmune diseases? Clin Dev Immunol 2006; 13: 185–195.

    Article  CAS  Google Scholar 

  19. Becker KG . The common variants/multiple disease hypothesis of common complex genetic disorders. Med Hypotheses 2004; 62: 309–317.

    Article  CAS  Google Scholar 

  20. Seldin MF, Amos CI . Shared susceptibility variations in autoimmune diseases: a brief perspective on common issues. Genes Immun 2009; 10: 1–4.

    Article  CAS  Google Scholar 

  21. Anaya JM, Mantilla RD, Correa PA . Immunogenetics of primary Sjogren's syndrome in Colombians. Semin Arthritis Rheum 2005; 34: 735–743.

    Article  CAS  Google Scholar 

  22. Castano-Rodriguez N, Diaz-Gallo LM, Pineda-Tamayo R, Rojas-Villarraga A, Anaya JM . Meta-analysis of HLA-DRB1 and HLA-DQB1 polymorphisms in Latin American patients with systemic lupus erythematosus. Autoimmun Rev 2008; 7: 322–330.

    Article  CAS  Google Scholar 

  23. Pan HF, Ye DQ, Wang Q, Li WX, Zhang N, Li XP et al. Clinical and laboratory profiles of systemic lupus erythematosus associated with Sjogren syndrome in China: a study of 542 patients. Clin Rheumatol 2008; 27: 339–343.

    Article  Google Scholar 

  24. Ramos-Casals M, Brito-Zeron P, Font J . The overlap of Sjogren's syndrome with other systemic autoimmune diseases. Semin Arthritis Rheum 2007; 36: 246–255.

    Article  Google Scholar 

  25. Isenberg DA . Systemic lupus erythematosus and Sjogren's syndrome: historical perspective and ongoing concerns. Arthritis Rheum 2004; 50: 681–683.

    Article  Google Scholar 

  26. Takai T, Li M, Sylvestre D, Clynes R, Ravetch JV . FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 1994; 76: 519–529.

    Article  CAS  Google Scholar 

  27. Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, Newland SA et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med 2008; 205: 1573–1582.

    Article  CAS  Google Scholar 

  28. Fossati G, Moots RJ, Bucknall RC, Edwards SW . Differential role of neutrophil Fc gamma receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. Arthritis Rheum 2002; 46: 1351–1361.

    Article  CAS  Google Scholar 

  29. Ruth AJ, Kitching AR, Kwan RY, Odobasic D, Ooi JD, Timoshanko JR et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. J Am Soc Nephrol 2006; 17: 1940–1949.

    Article  CAS  Google Scholar 

  30. Moore JH . The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 2003; 56: 73–82.

    Article  Google Scholar 

  31. Williams SM, Haines JL, Moore JH . The use of animal models in the study of complex disease: all else is never equal or why do so many human studies fail to replicate animal findings? Bioessays 2004; 26: 170–179.

    Article  CAS  Google Scholar 

  32. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL . The human disease network. Proc Natl Acad Sci USA 2007; 104: 8685–8690.

    Article  CAS  Google Scholar 

  33. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  Google Scholar 

  34. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271–1277.

    Article  CAS  Google Scholar 

  35. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE et al. Classification criteria for Sjogren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002; 61: 554–558.

    Article  CAS  Google Scholar 

  36. Bravo ML, Valenzuela CY, Arcos-Burgos OM . Polymorphisms and phyletic relationships of the Paisa community from Antioquia (Colombia). Gene Geogr 1996; 10: 11–17.

    CAS  PubMed  Google Scholar 

  37. Bedoya G, Montoya P, Garcia J, Soto I, Bourgeois S, Carvajal L et al. Admixture dynamics in Hispanics: a shift in the nuclear genetic ancestry of a South American population isolate. Proc Natl Acad Sci USA 2006; 103: 7234–7239.

    Article  CAS  Google Scholar 

  38. Correa PA, Gomez LM, Cadena J, Anaya JM . Autoimmunity and tuberculosis. Opposite association with TNF polymorphism. J Rheumatol 2005; 32: 219–224.

    CAS  PubMed  Google Scholar 

  39. Gomez LM, Anaya JM, Gonzalez CI, Pineda-Tamayo R, Otero W, Arango A et al. PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun 2005; 6: 628–631.

    Article  CAS  Google Scholar 

  40. Hanley JA . A heuristic approach to the formulas for population attributable fraction. J Epidemiol Community Health 2001; 55: 508–514.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robert A Clark and George Crawford for their institutional support; Jill King and Adriana Benavides for their help with the bioinformatics for designing the primers and probe. We thank the reviewers of this study for their critical review that greatly helped in improving our paper. This work was supported by the Voelcker Fund Scholar Award to Dr Sunil Ahuja from the Max and Minnie Tomerlin Voelcker Fund. SKA is also a recipient of the Elizabeth Glaser Scientist Award, the Burroughs Wellcome Clinical Scientist Award in Translational Research and the Doris Duke Distinguished Clinical Scientist Award. This work was also supported in part by the Rosario University, Bogota, Colombia.

Author information

Authors and Affiliations

Corresponding author

Correspondence to S K Ahuja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamtani, M., Anaya, JM., He, W. et al. Association of copy number variation in the FCGR3B gene with risk of autoimmune diseases. Genes Immun 11, 155–160 (2010). https://doi.org/10.1038/gene.2009.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/gene.2009.71

Keywords

This article is cited by

Search

Quick links