Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Risk of autoimmune diabetes in APECED: association with short alleles of the 5′insulin VNTR

Abstract

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autoimmune disease causing a wide spectrum of autoimmune dysfunction potentially including diabetes of an autoimmune etiology. We have previously described a pair of discordant APECED siblings and pointed to a possible role of 5′insulin variable number of tandem repeats (VNTR) locus IDDM2 in the appearance of diabetes within this disease. In vitro studies have previously suggested that class I VNTR alleles were associated with decreased fetal thymic insulin expression. We genotyped the 5′INS VNTR locus and several flanking 11p15.5 markers in 50 Finnish APECED subjects and explored the possible contribution of IDDM2 in the development of diabetes. The shorter 5′INS VNTR class I alleles (<35 repeats) were more prevalent in the diabetic Finnish APECED subjects than in non-diabetic APECED subjects. Logistic regression analysis revealed that having 1 short (<35) VNTR allele did not increase the risk of developing diabetes (95% CI 0.6–27.0), whereas having 2 short alleles conferred a 43.5-fold increased risk (95% CI 3.0–634.6). We conclude that short 5′INS VNTR class I alleles play a role in susceptibility to autoimmune diabetes in the context of APECED.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aaltonen J, Bjorses P, Sandkuijl L, Perheentupa J, Peltonen L . An autosomal locus causing autoimmune disease: autoimmune polyglandular type 1 assigned to chromosome 21. Nat Genet 1994; 8: 83–87. 2008. 1997.

    Article  CAS  Google Scholar 

  2. Ahonen P, Myllarniemi S, Sipila I, Perheentupa J . Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990; 322: 1829–1836.

    Article  CAS  Google Scholar 

  3. Perheentupa J . Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab 2006; 91: 2843–2850.

    Article  CAS  Google Scholar 

  4. Thorisson GA, Smith AV, Krishnan L, Stein LD . The International HapMap Project Web site. Genome Res 2005; 15: 1592–1593.

    Article  CAS  Google Scholar 

  5. Perheentupa J . Autoimmune polyendocrinopathy—candidiasis—ectodermal dystrophy (APECED). Horm Metab Res 1996; 28: 353–356.

    Article  CAS  Google Scholar 

  6. Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M et al. Positional cloning of the APECED gene. Nat Genet 1997; 17: 393–398.

    Article  CAS  Google Scholar 

  7. Halonen M, Eskelin P, Myhre AG, Perheentupa J, Husebye ES, Kämpe O et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J Clin Endocrinol Metab 2002; 87: 2568–2574.

    Article  CAS  Google Scholar 

  8. Julier C, Hyer RN, Davies J, Merlin F, Soularue P, Briant L et al. Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 1991; 354: 155–159.

    Article  CAS  Google Scholar 

  9. Vogel A, Strassburg CP, Obermayer-Straub P, Brabant G, Manns MP . The genetic background of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy and its autoimmune disease components. J Mol Med 2002; 80: 201–211.

    Article  CAS  Google Scholar 

  10. Bennett ST, Todd JA . Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu Rev Genet 1996; 30: 343–370.

    Article  CAS  Google Scholar 

  11. Bennett ST, Lucassen AM, Gough SC, Powell EE, Undlien DE, Pritchard LE et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995; 9: 284–292.

    Article  CAS  Google Scholar 

  12. Urrutia I, Calvo B, Bilbao JR, Castano L . Anomalous behaviour of the 5′ insulin gene polymorphism allele 814: lack of association with Type I diabetes in Basques. GEPV-N Group. Basque-Navarre Endocrinology and Paediatrics. Diabetologia 1998; 41: 1121–1123.

    Article  CAS  Google Scholar 

  13. Pugliese A, Zeller M, Fernandez Jr A, Zalcberg LJ, Bartlett RJ, Ricordi C et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997; 15: 293–297.

    Article  CAS  Google Scholar 

  14. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997; 15: 289–292.

    Article  CAS  Google Scholar 

  15. Paquette J, Giannoukakis N, Polychronakos C, Vafiadis P, Deal C . The INS 5′ variable number of tandem repeats is associated with IGF2 expression in humans. J Biol Chem 1998; 273: 14158–14164.

    Article  CAS  Google Scholar 

  16. Marchand L, Polychronakos C . Evaluation of polymorphic splicing in the mechanism of the association of the insulin gene with diabetes. Diabetes 2007; 56: 709–713.

    Article  CAS  Google Scholar 

  17. Rodriguez S, Gaunt TR, Vorechovsky I, Kralovicova J, Wood PJ, Day INM . Comment on: Marchand and Polychronakos (2007) Evaluation of polymorphic splicing in the mechanism of the association of the insulin gene with diabetes: Diabetes 56:709-713. Diabetes 2007; 56: e16. 2007.

    Article  CAS  Google Scholar 

  18. Ward L, Paquette J, Seidman E, Huot C, Alvarez F, Crock P et al. Severe autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy in an adolescent girl with a novel AIRE mutation: response to immunosuppressive therapy. J Clin Endocrinol Metab 1999; 84: 844–852.

    CAS  PubMed  Google Scholar 

  19. Adamson KA, Cheetham TD, Kendall-Taylor P, Seckl JR, Pearce SH . The role of the IDDM2 locus in the susceptibility of UK APS1 subjects to type 1 diabetes mellitus. Int J Immunogenet 2007; 34: 17–21.

    Article  CAS  Google Scholar 

  20. Barratt BJ, Payne F, Lowe CE, Hermann R, Healy BC, Harold D et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes 2004; 53: 1884–1889.

    Article  CAS  Google Scholar 

  21. Stead JD, Buard J, Todd JA, Jeffreys AJ . Influence of allele lineage on the role of the insulin minisatellite in susceptibility to type 1 diabetes. Hum Mol Genet 2000; 9: 2929–2935.

    Article  CAS  Google Scholar 

  22. Rostedt I, Lalu K, Lukka M, Sajantila A . Genotyping of five short tandem repeat loci via triplex and duplex PCR. Forensic Sci Int 1996; 82: 217–226.

    Article  CAS  Google Scholar 

  23. Gylling M, Tuomi T, Bjorses P, Kontiainen S, Partanen J, Christie MR et al. ss-cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab 2000; 85: 4434–4440.

    CAS  PubMed  Google Scholar 

  24. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J . Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 2000; 23: 1516–1526.

    Article  CAS  Google Scholar 

  25. Soderbergh A, Myhre AG, Ekwall O, Gebre-Medhin G, Hedstrand H, Landgren E et al. Prevalence and clinical associations of 10 defined autoantibodies in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 2004; 89: 557–562.

    Article  Google Scholar 

  26. McGinnis RE, Spielman RS . Insulin gene 5′ flanking polymorphism. Length of class 1 alleles in number of repeat units. Diabetes 1995; 44: 1296–1302.

    Article  CAS  Google Scholar 

  27. Hedstrand H, Ekwall O, Haavik J, Landgren E, Betterle C, Perheentupa J et al. Identification of tyrosine hydroxylase as an autoantigen in autoimmune polyendocrine syndrome type I. Biochem Biophys Res Commun 2000; 267: 456–461.

    Article  CAS  Google Scholar 

  28. Borelli MI, Rubio M, Garcia ME, Flores LE, Gagliardino JJ . Tyrosine hydroxylase activity in the endocrine pancreas: changes induced by short-term dietary manipulation. BMC Endocr Disord 2003; 3: 2.

    Article  Google Scholar 

  29. Adeghate E . Pancreatic tissue grafts are reinnervated by neuro-peptidergic and cholinergic nerves within five days of transplantation. Transpl Immunol 2002; 10: 73–80.

    Article  CAS  Google Scholar 

  30. Kim MS, Polychronakos C . Immunogenetics of type 1 diabetes. Horm Res 2005; 64: 180–188.

    CAS  PubMed  Google Scholar 

  31. Bennett ST, Wilson AJ, Cucca F, Nerup J, Pociot F, McKinney PA et al. IDDM2-VNTR-encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J Autoimmun 1996; 9: 415–421.

    Article  CAS  Google Scholar 

  32. Hearne CM, Ghosh S, Todd JA . Microsatellites for linkage analysis of genetic traits. Trends Genet 1992; 8: 288–294.

    Article  CAS  Google Scholar 

  33. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851–861.

    Article  CAS  Google Scholar 

  34. Undlien DE, Bennett ST, Todd JA, Akselsen HE, Ikäheimo I, Reijonen H et al. Insulin gene region-encoded susceptibility to IDDM maps upstream of the insulin gene. Diabetes 1995; 44: 620–625.

    Article  CAS  Google Scholar 

  35. Lucassen AM, Julier C, Beressi JP, Boitard C, Froguel P, Lathrop M et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR. Nat Genet 1993; 4: 305–310.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank John Podoba, PhD (Epidemiologist, Applied Clinical Research Unit, CHU-Ste-Justine) for the statistical analyses. This study was supported by scholarship funds to DV from the Foundation AA van Beek-Fonds (Rotterdam, The Netherlands), the Foundation Bekker-la Bastide Fonds (Rotterdam, The Netherlands), the Foundation Schuurman Schimmel-van Outeren (Haarlem, The Netherlands) and the Diabetes Fund (Amersfoort, The Netherlands), as well as the Fonds de recherche en Santé du Québec to CD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C L Deal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paquette, J., Varin, D., Hamelin, C. et al. Risk of autoimmune diabetes in APECED: association with short alleles of the 5′insulin VNTR. Genes Immun 11, 590–597 (2010). https://doi.org/10.1038/gene.2010.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/gene.2010.33

Keywords

Search

Quick links