Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Female-predominant sex ratios in angiosperms
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1974

Female-predominant sex ratios in angiosperms

  • David G Lloyd1 

Heredity volume 32, pages 35–44 (1974)Cite this article

  • 1931 Accesses

  • 92 Citations

  • Metrics details

Summary

A model is presented which expresses the seed production of dioecious and gynodioecious animal-pollinated Angiosperms in terms of the relative seed-fecundity of the sexes, the number of pollinator visits to each flower and the sex ratio. The model predicts that the maximum seed set occurs when females predominate, providing the pollinators visit each flower more than once and the seed set of males is not high.

There is strong evidence that a marked preponderance of females in species of four genera is due to more frequent fertilisation by female-determining pollen nuclei than by male-determining nuclei. Two hypotheses have been proposed to explain this differential fertilisation.

Several objections are raised to the hypothesis of Lewis (1942), Mulcahy (1967) and Kaplan (1972) that female-predominant sex ratios have been selected because they maximise the total seed production of populations. It is considered that the hypothesis of Smith (1963) that the differential fertilisation is a consequence of the genetic differentiation of sex chromosomes offers a more likely explanation of female-predominant sex ratios.

Similar content being viewed by others

Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration

Article 29 March 2021

Pollinator sex matters in competition and coexistence of co-flowering plants

Article Open access 18 March 2023

Range expansion decreases the reproductive fitness of Gentiana officinalis (Gentianaceae)

Article Open access 14 February 2022

Article PDF

References

  • Allen, C E. 1940. The genotypic basis of sex-expression in Angiosperms. Bot Rev, 6. 227–300.

    Article  Google Scholar 

  • Burrows, C J. 1960. Studies in Pimelea. I. The breeding system. Trans Roy Soc New Zealand, 88, 29–45.

    Google Scholar 

  • Connor, H E. 1965. Breeding systems in New Zealand grasses. V. Naturalised species of Cortaderia. New Zealand J Bot, 3, 17–23.

    Article  Google Scholar 

  • Correns, C. 1928. Bestimmung, Vererbung und Verteilung des Geschlechtes bei den hoheren Pflanzen. Handb Vererbungsw, 2, 1–138.

    Google Scholar 

  • Dronamraju, K R. 1965. The function of the Y chromosome in man, animals and plants. Adv Genet, 13, 227–310.

    Article  CAS  PubMed  Google Scholar 

  • Elkington, T T, and Woodell, S R J. 1963. Potentilla fruticosa L. (Dasiphora fruticosa (L.) Rydb.). J Ecology, 51, 769–781.

    Article  Google Scholar 

  • Fisher, R A. 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Godley, E J. 1964. Breeding systems in New Zealand plants. 3. Sex ratios in some natural populations. New Zealand J Bot, 2, 205–212.

    Article  Google Scholar 

  • Grewal, M S, and Ellis, J R. 1972. Sex determination in Potentilla fruticosa. Heredity, 29, 359–362.

    Article  Google Scholar 

  • Harris, W. 1968. Environmental effects on the sex ratio of Rumex acetosella L. Proc New Zealand Ecol Soc, 15, 51–54.

    Google Scholar 

  • Kaplan, S M. 1972. Seed production and sex ratio in anemophilous plants. Heredity, 28, 281–285.

    Article  Google Scholar 

  • Kihara, H, and Hirayoshi, I. 1932. Die Geschlechtschromosomen von Humulus japonicus Sieb. et Zucc. 8th Congr Jap Ass Adv Sci, 363–367.

  • Lawrence, C W. 1963. Genetic studies on wild populations of Melandrium. II. Flowering time and plant weight. Heredity, 18, 149–163.

    Article  Google Scholar 

  • Lewis, D. 1942. The evolution of sex in flowering plants. Cambr Phil Soc Biol Rev, 17, 46–67.

    Article  Google Scholar 

  • Löve, A. 1943. Cytogenetic studies on Rumex subgenus Acetosella. Hereditas, 30, 1–136.

    Article  Google Scholar 

  • Lloyd, D G. 1973a. Sex ratios in sexually dimorphic Umbelliferae. Heredity (in press).

  • Lloyd, D G. 1973b. Theoretical sex ratios of dioecious and gynodioecious Angiosperms. Heredity, 31, 11–34.

    Article  Google Scholar 

  • Mulgahy, D L. 1967. Optimal sex ratio in Silene alba. Heredity, 22, 411–423.

    Article  Google Scholar 

  • Mulcahy, D L. 1971. A correlation between gametophytic and sporophytic haracteristics in Zea mays L. Science, 171, 1155–1156.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M. 1970. Accumulation of non-functional genes on sheltered chromosomes. Amer Nat, 104, 311–322.

    Article  Google Scholar 

  • Putwain, P D, and Harper, J L. 1972. Studies in the dynamics of plant populations. V. Mechanisms governing the sex ratio in Rumex acetosa and R. acetosella. J Ecol, 60, 113–129.

    Article  Google Scholar 

  • Riede, W. 1925. Beitrage zum Geschlechts-und Anpassungs-problem. Flora, 18/19, 421–452.

    Google Scholar 

  • Ross, M D. 1969. Digenic inheritance of male sterility in Plantago lanceolata. Can J Genet Cytol, 11, 739–744.

    Article  Google Scholar 

  • Shaw, R F, and Mohler, J D. 1953. The selective significance of the sex ratio. Amer Nat, 87, 337–342.

    Article  Google Scholar 

  • Singh, R B, and Smith, B W. 1971. The mechanism of sex determination in Rumex acetosella. Theor Appl Genetics, 41, 360–364.

    Article  CAS  Google Scholar 

  • Smith, B W. 1963. The mechanism of sex determination in Rumex hastatulus. Genetics, 48, 1265–1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valdeyron, G. Assouad, W, and Dommée, B. 1970. Coéxistence des determinismes génique et cytoplasmique de la stérilité mâle: recherche d'une hypothèse explicative. In Symposium Stérilité Mâle en Horticulture, Versailles.

  • Westergaard, M. 1958. The mechanism of sex determination in dioecious flowering plants. Adv Genet, 5, 217–281.

    Article  Google Scholar 

  • Williams, W. 1964. Genetical principles and plant breeding. Blackwell, Oxford.

    Google Scholar 

  • Å»uk, J. 1963. An investigation on polyploidy and sex determination within the genus Rumex. Acta Soc Bot Polon, 32, 5–67.

    Article  Google Scholar 

  • Å»uk, J. 1970. Function of Y chromosomes in Rumex thyrsiflorus. Theor Appl Genetics, 40, 124–129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Botany Department, University of Canterbury, Christchurch, New Zealand

    David G Lloyd

Authors
  1. David G Lloyd
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, D. Female-predominant sex ratios in angiosperms. Heredity 32, 35–44 (1974). https://doi.org/10.1038/hdy.1974.3

Download citation

  • Received: 03 January 1973

  • Issue date: 01 February 1974

  • DOI: https://doi.org/10.1038/hdy.1974.3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • The influence of environmental conditions on sex ratio in a dioecious plant Pistacia vera L

    • Effat Ghadirzadeh-Khorzoghi
    • Masoomeh Jannesar
    • Seyed Mahdi Seyedi

    Plant Physiology Reports (2022)

  • Plant sex determination and sex chromosomes

    • D Charlesworth

    Heredity (2002)

  • The effect of drought stress on the sex ratio variation ofSilene otites

    • Leo L. Soldaat
    • Helge Lorenz
    • Annette Trefflich

    Folia Geobotanica (2000)

  • Insects and plants in the pollination ecology of the boreal zone

    • P. G. Kevan
    • E. A. Tikhmenev
    • M. Usui

    Ecological Research (1993)

  • The sex ratlo in a dioecious endemic plant, Silene dielinis

    • H. C. Prentice

    Genetica (1984)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited