Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Identical polypyrimidine-polypurine satellite DNAs in wheat and barley
Download PDF
Download PDF
  • Original Article
  • Published: 01 June 1980

Identical polypyrimidine-polypurine satellite DNAs in wheat and barley

  • E S Dennis1,
  • W L Gerlach1 &
  • W J Peacock1 

Heredity volume 44, pages 349–366 (1980)Cite this article

  • 1941 Accesses

  • 104 Citations

  • Metrics details

Summary

A satellite DNA can be isolated from wheat and barley using Ag+/Cs2SO4 gradients. These DNAs are highly repeated, each with a complexity of about 10 bp. The satellites isolated from the two species cannot be differentiated by physical properties such as buoyant density, melting temperature or renaturation kinetics and heterologous hybrids melt at the same temperature as homologous hybrids. The restriction endonuclease MboII digests both satellites to give identical patterns. These data together with those from digests of RNAs complementary to the separated DNA strands suggest a general formulation of a sequence as (GAA)m (GAG)n. Localisation of the satellite by in situ hybridisation shows it to have major sites on all seven chromosomes of the B genome and chromosomes 4A and 7A in hexaploid wheat, and on all barley chromosomes. There are specific minor sites on other chromosomes of the A and D genomes of wheat.

Similar content being viewed by others

Identification of quantitative trait nucleotides for grain quality in bread wheat under heat stress

Article Open access 24 February 2025

Identifying the physiological traits associated with DNA marker using genome wide association in wheat under heat stress

Article Open access 29 August 2024

Transcriptome profiling reveals the genes and pathways involved in thermo-tolerance in wheat (Triticum aestivum L.) genotype Raj 3765

Article Open access 01 September 2022

Article PDF

References

  • Bendich, A J, and McCarthy, B J. 1970. DNA comparisons among barley, oats, rye and wheat. Genetics 65, 545–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, M D, and Smith, J B. 1976. Nuclear DNA amounts in angiosperms. Phil Trans Royal Soc (Lond), B Biological Sciences. 274, 227–274.

    Article  CAS  Google Scholar 

  • Birnstiel, M L, Sells, B H, and Purdom, I F. 1972. Kinetic complexity of RNA molecules. J Mol Biol, 63, 21–39.

    Article  CAS  PubMed  Google Scholar 

  • Brownlee, G G. 1972. Determination of sequences in RNA, eds. T. S. Work and E. Work. North Holland Publishing Co., Amsterdam.

    Book  Google Scholar 

  • Brutlag, D L, Carlson, M, Fry, K, and Hsieh, T S. 1977. DNA sequence organization in Drosophila heterochromatin. Cold Spring Harbor Symp Quant Biol, 42, 1137–1146.

    Article  Google Scholar 

  • Brutlag, D L, and Peacock, W J. 1975. Sequences of highly repeated DNA in Drosophila melanogaster. In: The Eukaryote Chromosome. Aust. Nat. Univ. Press, Canberra.

    Google Scholar 

  • Burgess, D R, and Jendrisak, J J. 1975. A procedure for the rapid, large scale purification of Escherichia coli DNA-dependent RNA polymerase involving polymin P precipitation and DNA cellulose chromatography. Biochemistry, 14, 4634.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, V, Miller, T E, and Riley, R. (1976). Equivalence of the A genome of bread wheat with that of Triticum urartu. Genet Res Camb, 27, 69–76.

    Article  Google Scholar 

  • Endow, S A. 1977. Analysis of Drosophila melanogaster satellite IV with restriction endonuclease Mbo II.. J Mol Biol, 114, 441–449.

    Article  CAS  PubMed  Google Scholar 

  • Fry, K, and Salser, W. 1977. Nucleotide sequences of HSα satellite from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell, 12, 1069–1084.

    Article  CAS  PubMed  Google Scholar 

  • Gall, J G, and Atherton, D D. 1974. Satellite DNA sequences in D. virilis. J Mol Biol, 85, 633–664.

    Article  CAS  PubMed  Google Scholar 

  • Gelinas, R E, Myers, D A, and Roberts, R J. 1977. Two sequence-specific endonucleases from Moraxella bovis. J Mol Biol, 114, 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach, W L. 1977. N-banded karyotypes of wheat species. Chromosoma, 62, 49–56.

    Article  Google Scholar 

  • Gerlach, W L, Appels, R, Dennis, E S, and Peacock, W J. 1978. Evolution and analysis of wheat genomes using highly repeated DNA sequences. Proc 5th Int Wheat Genet Symp, 1, 81–91.

    Google Scholar 

  • Gerlach, W L, and Peacock, W J. 1979. Chromosomal locations of highly repeated DNA sequences in wheat. Heredity (in press).

  • Gill, B S, and Kimber, G. 1974. Giemsa C-banding and the evolution of wheat. Proc Nat Acad Sci USA, 71, 4086–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin, B E, and Mirzabekov, A D. 1972. 5S RNA conformation studies of the partial T1 ribonuclease digestion by gel electrophoresis and two dimensional thin layer chromatography. J Mol Biol, 72, 633–643.

    Article  PubMed  Google Scholar 

  • Hennig, W, and Walker, P M B. 1970. Variations in the DNA from two rodent families (Cricetiaea and Muridae). Nature, 225, 915–919.

    Article  CAS  PubMed  Google Scholar 

  • Huguet, T, and Jouanin, L. 1972. Wheat DNA: Study of the heavy satellite in Ag+-Cs2 SO4 density gradient. Biochem Biophys Res Comm, 46, 1169–1174.

    Article  CAS  PubMed  Google Scholar 

  • Islam, A K M R, Shepherd, K W, and Sparrow, D H B. 1978. Wheat-barley hybrids and addition lines. Proc 5th Int Wheat Genet Symp, 1, 365–371.

    Google Scholar 

  • Linde-Laursen, I. 1975. Giemsa C-banding of the chromosomes of “Emir” barley. Hereditas, 81, 285–289.

    Article  Google Scholar 

  • Lohe, A R. 1977. Highly repeated DNA in Drosophila simulons: chromosomal organization and evolutionary stability. Ph.D. Thesis, Australian National University.

  • Maxam, A M, and Gilbert, W. 1977. A new method for sequencing DNA. Proc Nat Acad Sci USA, 74, 560–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden, E S, and Sears, E R. 1946. The origin of Triticum spelta and its free threshing hexaploid derivatives. J Hered, 37, 107–116.

    Article  Google Scholar 

  • Noda, K, and Kasha, K J. 1977. Barley chromosome identification with the C banding, Giemsa stain technique. Barley Genetics Newsletter 1977, 47–50.

  • Peacock, W J, Brutlag, D, Goldring, E, Appels, R, Hinton, C N, and Lindsley, D L. 1973. The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spring Harbor Symp Quant Biol, 38, 405–416.

    Article  Google Scholar 

  • Peacock, W J, Appels, R, Dunsmuir, P, Lohe, A R, and Gerlach, W L. 1976. Highly, repeated DNA sequences: chromosomal localization and evolutionary conservation. In: International Cell Biology, eds. B. R. Brinkley and K. R. Porter. Rockefeller University Press, pp. 494–506.

    Google Scholar 

  • Peacock, W J, Lohe, A R, Gerlach, W L, Dunsmuir, P, Dennis, E S, and Appels, R. 1977. Fine structure and evolution of DNA in heterochromatin. Cold Spring Harbor Symp Quant Biol, 42, 1121–1135.

    Article  Google Scholar 

  • Ranjekar, P K, Palotta, D, and Lafontaine, J G. 1976. Analysis of the genome of plants. II. Characterization of repetitive DNA in barley and wheat. Biochim Biophys Acta, 425, 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Rigby, P W J, Dieckmann, M, Rhodes, C, and Berg, P. 1976. Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol, 113, 237–251.

    Article  Google Scholar 

  • Salser, W, Bowens, S, Brown, D, El Adli, F, Fedoroff, N, Fry, K, Heindell, H, Paddock, O, Poon, R, Wallace, B, and Whitcomb, P. 1976. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed Proc, 35, 23–35.

    CAS  PubMed  Google Scholar 

  • Sears, E R. 1963. Chromosome mapping with the aid of telocentrics. Proc. 2nd Int. Wheat Genetics Symp., published in Hereditas, Suppl. Vol. 2, (1966).

  • Sears, E R. 1966. Nullisomic-tetrasonic combinations in hexaploid wheat. In “Chromosome Manipulations and Plant Genetics”, eds. R. Riley and K. R. Lewis. Oliver and Boyd, Edinburgh, 1966.

  • Singh, L, Purdom, I F, and Jones, K W. 1977. Effect of different denaturing agents on the detectability of specific DNA sequences of various base composition by in situ hybridization. Chromosoma (Berl), 60, 377–389.

    Article  CAS  Google Scholar 

  • Southern, E M. 1970. Base sequence and evolution of guinea pig a satellite DNA. Nature, 227, 794–798.

    Article  CAS  PubMed  Google Scholar 

  • Symons, R H. 1974. Synthesis of α32P ribo- and deoxyribonucleoside triphosphates. Methods in Enzymology, 29, 102–115.

    Article  CAS  PubMed  Google Scholar 

  • Walker, P M B. 1968. How different are the DNAs from related animals. Nature (Lond), 219, 228–232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, P.O. Box 1600, Canberra City, A.C.T. 2601, Australia

    E S Dennis, W L Gerlach & W J Peacock

Authors
  1. E S Dennis
    View author publications

    Search author on:PubMed Google Scholar

  2. W L Gerlach
    View author publications

    Search author on:PubMed Google Scholar

  3. W J Peacock
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennis, E., Gerlach, W. & Peacock, W. Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44, 349–366 (1980). https://doi.org/10.1038/hdy.1980.33

Download citation

  • Received: 17 September 1979

  • Issue date: 01 June 1980

  • DOI: https://doi.org/10.1038/hdy.1980.33

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in triticale

    • Dong Cao
    • Dongxia Wang
    • Baolong Liu

    Theoretical and Applied Genetics (2022)

  • Recombination between homoeologous chromosomes induced in durum wheat by the Aegilops speltoides Su1-Ph1 suppressor

    • Hao Li
    • Le Wang
    • Jan Dvorak

    Theoretical and Applied Genetics (2019)

  • Molecular cytogenetic analysis reveals evolutionary relationships between polyploid Aegilops species

    • Zinat Abdolmalaki
    • Ghader Mirzaghaderi
    • Ekaterina D. Badaeva

    Plant Systematics and Evolution (2019)

  • Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii

    • Laibin Zhao
    • Shunzong Ning
    • Dengcai Liu

    BMC Genomics (2018)

  • Constructing an alternative wheat karyotype using barley genomic DNA

    • Diána Icsó
    • Márta Molnár-Láng
    • Gabriella Linc

    Journal of Applied Genetics (2015)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited