Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic variability and gene flow in geographical populations of Ceratitis capitata (Wied.) (medfly)
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1991

Genetic variability and gene flow in geographical populations of Ceratitis capitata (Wied.) (medfly)

  • Giuliano Gasperi1,
  • Carmela R Guglielmino2,
  • Anna R Malacrida1 &
  • …
  • Riccardo Milani1 

Heredity volume 67, pages 347–356 (1991)Cite this article

  • 1393 Accesses

  • 61 Citations

  • Metrics details

Abstract

Two African populations of Ceratitis capitata (Kenya and Réunion Isl.) and two Mediterranean ones (Sardinia and Procida Isl.) have been studied for genetic variability at 25 loci by electrophoresis. Wright’s FST, Slatkin’s Nm* gene flow estimator, Nei’s distance (D) together with measures of variability such as H̄, P̄, Ā have been used to compare the population from Kenya with the other three. Parameters using gene frequencies (FST, D, Nm*) indicate the presence of substantial geographic heterogeneity, largely attributable to genetic drift and correlated with dispersion of the medfly from its source area (Subsaharan Africa) to the periphery. The Kenyan population has high genetic variability (assessed by H̄, P̄ and Ā), as might be expected given its native status. Significant gene flow estimates between Kenya and the derived Mediterranean populations supports the hypothesis of recent colonization. Part of the geographic heterogeneity is related to the presence of fixed alleles in the more differentiated Réunion population although it maintains the genetic attributes of the ancestral population. Selection or other forces may have played an important role in the differentiation of this population.

Similar content being viewed by others

Geographic population structure of the honeybee microsporidian parasite Vairimorpha (Nosema) ceranae in the South West Indian Ocean

Article Open access 26 July 2023

Joint analysis of microsatellites and flanking sequences enlightens complex demographic history of interspecific gene flow and vicariance in rear-edge oak populations

Article 20 June 2022

Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata

Article Open access 08 January 2024

Article PDF

References

  • Berlocher, S H. 1984. Genetic changes coinciding with colonization of California by the walnut husk fly, Rhagoletis completa. Evolution, 38, 906–918.

    Article  PubMed  Google Scholar 

  • Fletcher, B S. 1989. Life history strategies of tephritid fruit flies. In: Robinson, A. S. and Hooper, G. (eds), Fruit Flies: Their Biology, Natural Enemies and Control, Vol. 3B, Elsevier Science Publishers, Amsterdam, pp. 195–208.

    Google Scholar 

  • Gasperi, G, Malacrida, A R, and Milani, R. 1987. Protein variability and population genetics of Ceratitis capitata. In: Economopoulos, A. P., (ed.), Fruit Flies. Elsevier Science Publishers, Amsterdam, pp. 149–157.

    Google Scholar 

  • Gasperi, G, Malacrida, A R, Guglielmino, C R, and Milani, R. 1990. Electrophoretic multilocus analysis for the study of natural populations of the medfly Ceratitis capitata. In: Genetic Sexing of the Mediterranean Fruit Fly, International Atomic Energy Agency, Vienna, Austria, pp. 90–94.

    Google Scholar 

  • Gasperi, G, Malacrida, A, Tosetti, M, and Milani, R. 1986. Enzyme variability: a tool for investigating the genome organization and the population structure of Ceratitis capitata. In: Cavalloro, R. (ed.), Fruit Flies of Economic Importance 84. A. A. Balkema, Rotterdam, pp. 153–161.

    Google Scholar 

  • Gillespie, J H, and Langley, C H. 1974. A general model to account for enzyme variation in natural populations. Genetics, 76, 837–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen, K S, William, W W, and Tassan, R L. 1981. Mediterranean fruit fly: the worst may be yet to come. California Agriculture (University of California, Division of Agricultural Sciences, Reports on Progress in Research), 35, 5–7.

    Google Scholar 

  • Harris, H, Hopkinson, D A. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Huettel, M D, Fuerst, P A, Maruyama, M, and Chakraborty, R. 1980. Genetic effects of multiple population bottlenecks in the Mediterranean fruit fly (Ceratitis capitata). Genetics, 94s, 47–48 (Abstract).

    Google Scholar 

  • Kojima, K, Gillespie, J H, and Tobari, Y N. 1970. A profile of Drosophila species enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolizing systems and some other enzymes. Biochem Genet, 4, 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Loukas, M. 1989. Population genetics studies of fruit flies of economic importance, especially medfly and olive fruit fly, using electrophoretic methods. In: H. D. Loxdale and J. Den Hollander (eds), Electrophoretic Studies on Agricultural Pests. Systematics Association Special Volume No. 39, Clarendon Press, Oxford, U.K., pp. 69–102.

    Google Scholar 

  • Malacrida, A R, Gasperi, G, Baruffi, L, Biscaldi, G F, and Milani, R. 1988. Updating of the genetics of Ceratitis capitata (Wied.). In: Modern Insect Control: Nuclear Techniques and Biotechnology. International Atomic Energy Agency, Vienna, Austria, pp. 221–227.

    Google Scholar 

  • Malacrida, A R, Gasperi, G, and Milani, R. 1987. Gen organization of Ceratitis capitata: linkage groups and evidence for sex-ratio distorters. In: A. P. Economopoulos (ed.), Fruit Flies. Elsevier Science Publishers, Amsterdam, pp. 169–174.

    Google Scholar 

  • Meera Khan, P. 1971. Enzyme electrophoresis on cellulose acetate gel: zymogram patterns in man-mouse and man-chinese hamster somatic cell hybrids. Arch Biochem Biophys, 145, 470–483.

    Article  CAS  PubMed  Google Scholar 

  • Milani, R, Gasperi, G, and Malacrida, A. 1989. Biochemical Genetics (of Ceratitis capitata). In: Robinson, A. S. and Hooper, G. (eds), Fruit Flies: Their Biology, Natural Enemies and Control, Vol. 3B, Elsevier Science Publishers, Amsterdam, pp. 33–56.

    Google Scholar 

  • Nei, M. 1971. Interspecific gene differences and evolutionary time from electrophoretic data on protein identity. Am Nat, 105, 385–398.

    Article  CAS  Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Am Nat, 106, 283–292.

    Article  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M, and Chesser, R K. 1983. Estimation of fixation indices and gene diversities. Ann Hum Genet, 47, 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M, Maruyama, T, and Chakraborty, R. 1975. The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Article  PubMed  Google Scholar 

  • Robinson, A S, and Hooper, G. eds., 1989. Fruit Flies: Their Biology, Natural Enemies and Control, Vol. 3A, B. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Saul, S H. 1986. Genetics of the Mediterranean fruit fly (Ceratitis capitata) (Wiedemann). In: Russel, G. E. (ed.), Agricultural Zoology Reviews, Vol. 1, Intercept Ltd, Ponteland, Newcastle uponTyne, U.K., pp. 73–108.

    Google Scholar 

  • Singh, R S, and Rhomberg, L R. 1987. A comprehensive study of genetic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic differentiation. Genetics, 117, 255–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin, M. 1981. Estimating levels of gene flow in natural populations. Genetics, 99, 323–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution, 39, 53–65.

    Article  PubMed  Google Scholar 

  • Slatkin, M. 1987. Gene flow and geographic structure of natural populations. Science, 236, 787–792.

    Article  CAS  PubMed  Google Scholar 

  • White, I M. 1989. The state of fruit fly taxonomy and future research priorities. In: Cavalloro, R. (ed.), Fruit Flies of Economic Importance 87. A. A. Balkema, Rotterdam, pp. 543–552.

    Google Scholar 

  • Workman, P L, and Niswander, J D. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J Hum Genet, 22, 24–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics, 16, 97–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1943. Isolation by distance. Genetics, 28, 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann Eugen, 15, 323–354.

    Article  CAS  PubMed  Google Scholar 

  • Zouros, E. 1976. Hybrid molecules and the superiority of the heterozygote. Nature, 262, 227–229.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Acknowledgements We would like to thank M. Ashburner, F. Kafatos and E. Zouros for critical reading and comments on an earlier draft of this manuscript. We are indebted to the following people for providing the specimens studied: D. Lindquist and E. Busch-Petersen (IAEA, Vienna, Austria); T. Mukiama (University of Nairobi, Kenya); S. Quilici (INRAT, Réunion, France); U. Cirio {ENEA, Rome, Italy) and G. Del Rio (University of Sassari, Italy).

This research was supported by the National Research Council of Italy, Special Project RAISA, Sub-project No. 2, Paper No. 40. Grants from MPI (funds 40 per cent from National Ministry of Education) and from IAEA (International Atomic Energy Agency, Vienna, Austria) also contributed to this work.

Author information

Authors and Affiliations

  1. Dipartimento di Biologia Animale, Università di Pavia, Piazza Botta 9, Pavia, 27100

    Giuliano Gasperi, Anna R Malacrida & Riccardo Milani

  2. Dipartimento di Genetica e Microbiologia, Università di Pavia ed Istituto di Genetica e Biologia Evoluzionistica del CNR, Pavia, Italy

    Carmela R Guglielmino

Authors
  1. Giuliano Gasperi
    View author publications

    Search author on:PubMed Google Scholar

  2. Carmela R Guglielmino
    View author publications

    Search author on:PubMed Google Scholar

  3. Anna R Malacrida
    View author publications

    Search author on:PubMed Google Scholar

  4. Riccardo Milani
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasperi, G., Guglielmino, C., Malacrida, A. et al. Genetic variability and gene flow in geographical populations of Ceratitis capitata (Wied.) (medfly). Heredity 67, 347–356 (1991). https://doi.org/10.1038/hdy.1991.98

Download citation

  • Received: 29 January 1991

  • Issue date: 01 December 1991

  • DOI: https://doi.org/10.1038/hdy.1991.98

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Ceratitis capitata
  • electrophoretic markers
  • gene flow
  • genetic variability
  • geographical populations

This article is cited by

  • Genetic structure of Mediterranean fruit fly (Diptera: Tephritidae) populations from Turkey revealed by mitochondrial DNA markers

    • Abuzer Güler
    • Elmas Karakoç
    • Vatan Taşkin

    Journal of Genetics (2019)

  • The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    • Alexie Papanicolaou
    • Marc F. Schetelig
    • Alfred M. Handler

    Genome Biology (2016)

  • Globalization and fruitfly invasion and expansion: the medfly paradigm

    • A. R. Malacrida
    • L. M. Gomulski
    • C. R. Guglielmino

    Genetica (2007)

  • Molecular Basis of the Size Polymorphism of the First Intron of theAdh-1 Gene of the Mediterranean Fruit Fly, Ceratitis capitata

    • Ludvik M. Gomulski
    • Saverio Brogna
    • Kostas Bourtzis

    Journal of Molecular Evolution (2004)

  • Do island populations have less genetic variation than mainland populations?

    • R Frankham

    Heredity (1997)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited