Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
A dual level model for speciation by multiple pericentric inversions
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 1992

A dual level model for speciation by multiple pericentric inversions

  • Max King1 

Heredity volume 68, pages 437–440 (1992)Cite this article

  • 559 Accesses

  • 11 Citations

  • Metrics details

Abstract

A considerable body of evidence suggests that the deleterious meiotic effects of pericentric inversions in F1 hybrids can be overcome by changes in chiasma location and various means of non-homologous pairing. Such overriding mechanisms may render pericentric inversions benign and increase the likelihood of their fixation in population isolates. It has been argued that overriding mechanisms of this type negate the involvement of pericentric inversions as reproductive isolating mechanisms in speciation. It is suggested, however, that the involvement of pericentric inversions in speciation should be considered on two levels. First, that by reducing meiotic effects in F1 hybrids, overriding mechanisms facilitate the fixation of pericentric inversions. Secondly, when contact hybridization occurs between the chromosomally derived and parental populations second-level effects may be encountered. That is, the recombinational effects of pericentric inversion differences on coadapted gene complexes (sensu Brncic, 1954; Shaw & Coates, 1983) enforce profound inviability barriers in F2 and backcross matings. In this way, multiple pericentric inversions may act as significant post-mating isolating mechanisms, whereas individual inversions with less significant second-level effects may not.

Similar content being viewed by others

Fragile, unfaithful and persistent Ys—on how meiosis can shape sex chromosome evolution

Article Open access 22 April 2022

Frequency and clinical significance of chromosomal inversions prenatally diagnosed by second trimester amniocentesis

Article Open access 09 February 2022

The importance of reproductive isolation in driving diversification and speciation within Peruvian mimetic poison frogs (Dendrobatidae)

Article Open access 27 August 2024

Article PDF

References

  • Brncic, D. 1954. Heterosis and the integration of the genotype in geographic populations of Drosophila pseudoobscura. Genetica, 39, 77–88.

    CAS  Google Scholar 

  • Davisson, M T, Poorman, P A, Roderick, R H, and Moses, M J. 1981. A pericentric inversion in the mouse. Cytogenet Cell Genet 30, 70–76.

    Article  CAS  Google Scholar 

  • Dobzhansky, T. 1951. Genetics and the Origin of Species, 3rd edn. Columbia University Press, New York.

    Google Scholar 

  • Fletcher, H L, and Hewitt, G M. 1978. Non-homologous synaptonemal complex formation in a heteromorphic bivalent in Keyacris scurra (Morabinae, Orthoptera). Chromosoma (Berl) 65, 271–281.

    Article  Google Scholar 

  • Greenbaum, I F, and Reed, M J. 1984. Evidence for heterosynaptic pairing of the inverted segment in pericentric inversion heterozygotes of deer mice (Peromyscus maniculatus). Cytogenet Cell Genet, 38, 106–111.

    Article  CAS  Google Scholar 

  • Hale, W W. 1986. Heterosynapsis and suppression of chias-mata within heterozygous pericentric inversions of the sitka deer mouse. Chromosoma (Berl), 94, 425–432.

    Article  CAS  Google Scholar 

  • John, B. 1981. Chromosome change and evolutionary change: a critique. In: Atchley, W. R. and Woodruff, D. (eds) Evolution and Speciation Essays in honour of M J D White, Cambridge University Press, Cambridge, pp. 23–51.

    Google Scholar 

  • John, B, and King, M. 1977. Heterochromatin variation in Cryptobothrus chrysophorus. 1. Chromosome differentiation in natural populations. Chromosoma (Berl), 64, 219–239.

    Article  Google Scholar 

  • John, B, and King, M. 1980. Heterochromatin variation in Cryptobothrus chrysophorus. III. Synthetic hybrids. Chromosoma (Berl) 78, 165–186.

    Article  Google Scholar 

  • King, M. 1984. Karyotypic evolution in Gehyra (Gekkonidae, Reptilia). IV. Chromosome change and speciation. Genetica, 64, 101–114.

    Article  Google Scholar 

  • King, M. 1987. Chromosomal rearrangements, speciation and the theoretical approach. Heredity, 59, 1–6.

    Article  Google Scholar 

  • Lande, R. 1984. The expected fixation rate of chromosomal inversions. Evolution, 38, 743–752.

    Article  Google Scholar 

  • Moses, M J. 1977. Microspreading and the synaptonemal complex in cytogenetic studies. Chromosomes Today, 8, 90–103.

    Google Scholar 

  • Moses, M J, Dresser, M E, and Poorman, P A. 1984. Composition and role of the synaptonemal complex. Symp Soc Exp Biol, 38, 245–270.

    CAS  PubMed  Google Scholar 

  • Moses, M J, Poorman, P A, Roderick, T H, and Davisson, M T. 1982. Synaptonemal complex analysis of mouse chromosomal rearrangements. IV. Synapsis and synaptic adjustment in two paracentric inversions. Chromosoma (Berl), 84, 457–474.

    Article  CAS  Google Scholar 

  • Nur, U. 1968. Synapsis and crossing-over within a paracentric inversion in the grasshopper Camnula pellucida. Chromosoma (Berl), 25, 198–214.

    Article  CAS  Google Scholar 

  • Poorman, P A, Moses, M J, Davisson, M T, and Roderick, T H. 1981. Synaptonemal complex analysis of mouse chromosomal rearrangements. III. Cytogenetic observations on two paracentric inversions. Chromosoma (Berl), 83, 419–429.

    Article  CAS  Google Scholar 

  • Rouhani, S, and Barton, N H. 1987. The probability of peak shifts in founder populations. J Theor Biol, 126, 51–62.

    Article  Google Scholar 

  • Nur, U. 1968. Synapsis and crossing-over within a paracentric inversion in the grasshopper Camnula pellucida. Chromosoma (Berl), 25, 198–214.

    Article  CAS  Google Scholar 

  • Poorman, P A, Moses, M J, Davisson, M T, and Roderick, T H. 1981. Synaptonemal complex analysis of mouse chromosomal rearrangements. III. Cytogenetic observations on two paracentric inversions. Chromosoma (Berl), 83, 419–429.

    Article  CAS  Google Scholar 

  • Rouhani, S, and Barton, N H. 1987. The probability of peak shifts in founder populations. J Theor Biol, 126, 51–62.

    Article  Google Scholar 

  • Schroeder, G L. 1968. Pericentric inversion polymorphism in Trimerotropis helfen (Orthoptera.Acrididae) and its effects on chiasma frequency. PhD thesis University of California at Davis.

  • Shaw, D D, and Coates, D J. 1983. Chromosomal variation and the concept of the coadapted genome — a direct cytological assessment. In: Bennett, M. and Brandham, P. (eds) Kew Chromosome Conference II. George Allen and Unwin, London, pp. 207–216.

    Google Scholar 

  • Shaw, D D, Coates, D J, and Wilkinson, P. 1986. Estimating the genic and chromosomal components of reproductive isolation within and between subspecies of the grasshopper Caledia captiva. Can J Genet Cytol, 28, 686–695.

    Article  Google Scholar 

  • Stack, S, and Anderson, L. 1988. An analysis of synaptic adjustment, length and twisting of synaptonemal complexes in maize. In: Brandham, P. E. (ed.) Kew Chromosome Conference III. HMSO, London, pp. 299–312.

    Google Scholar 

  • Tease, C, and Fisher, G. 1988. Chromosome pairing in foetal oocytes of mouse inversion heterozygotes. In Brandham, P. E. (ed.) Kew Chromosome Conference III. HMSO, London, pp. 293–298.

    Google Scholar 

  • Vetukhiv, M. 1953. Viability of hybrids between local populations of Drosophila pseudoobscura. Proc Nat Acad Sci, USA, 39, 30–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Museum of Arts and Sciences, Darwin, GPO Box 4646, N. T. 0801, Australia

    Max King

Authors
  1. Max King
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, M. A dual level model for speciation by multiple pericentric inversions. Heredity 68, 437–440 (1992). https://doi.org/10.1038/hdy.1992.63

Download citation

  • Received: 20 May 1991

  • Issue date: 01 May 1992

  • DOI: https://doi.org/10.1038/hdy.1992.63

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • chromosomes
  • inviability
  • pericentric inversions
  • speciation

This article is cited by

  • Dugesia hepta and Dugesia benazzii (Platyhelminthes: Tricladida): two sympatric species with occasional sex?

    • Daniel Dols-Serrate
    • Laia Leria
    • Marta Riutort

    Organisms Diversity & Evolution (2020)

  • Chromosome mapping of repetitive DNAs in sergeant major fishes (Abudefdufinae, Pomacentridae): a general view on the chromosomal conservatism of the genus

    • Nuntaporn Getlekha
    • Marcelo de Bello Cioffi
    • Wagner Franco Molina

    Genetica (2016)

  • Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats

    • Kersten Small
    • Jane Iber
    • Stephen T. Warren

    Nature Genetics (1997)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited