Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic differentiation within and among populations of chestnut (Castanea sativa Mill.) and wild cherry (Prunus avium L.)
Download PDF
Download PDF
  • Original Article
  • Published: 01 June 1993

Genetic differentiation within and among populations of chestnut (Castanea sativa Mill.) and wild cherry (Prunus avium L.)

  • N Frascaria1,
  • F Santi2 &
  • P H Gouyon1 

Heredity volume 70, pages 634–641 (1993)Cite this article

  • 1016 Accesses

  • 38 Citations

  • Metrics details

Abstract

Isoenzymes were used to examine genetic variability within and among populations of chestnut (Castanea sativa Mill.) and wild cherry (Prunus avium L.). Isoenzymes were sufficiently robust to allow the attribution of chestnut shoots to stumps; other markers were required to confirm the estimations of wild cherry clone sizes. No genetic structure was observed within populations of the two species and no significant departures from Hardy-Weinberg equilibrium were detected for the isoenzymes tested excluding one locus. F-statistics and measurements of genetic distances revealed little genetic differentiation among populations of these species. This could be explained by the influence of human activities and the limited number of generations observed for these species since the last glaciation.

Similar content being viewed by others

Gene flow between wild trees and cultivated varieties shapes the genetic structure of sweet chestnut (Castanea sativa Mill.) populations

Article Open access 02 September 2022

Comprehensive curation and validation of genomic datasets for chestnut

Article Open access 24 May 2025

Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development

Article Open access 06 April 2022

Article PDF

References

  • Bonnefoi, C. 1984. Etude du polymorphisme enzymatique des populations forestières de châtaignier (Castanea saliva Mill.). Thesis, USTL Montpellier, France.

  • Bousquet, J, Cheliak, W M, and Lalonde, M. 1987. Allozyme variability in natural population of green alder (Alnus crispa) in Quebec. Genome, 29, 345–352.

    Article  CAS  Google Scholar 

  • Cheliak, W M, and Dancik, B P. 1982. Genie diversity of natural populations of a clone forming tree Populus tremuloides. Can J Genet Cytol, 24, 611–616.

    Article  Google Scholar 

  • Clapper, R B. 1954. Chestnut breeding, techniques and results. J Hered, 45, 106–114, 201–208.

    Google Scholar 

  • Crane, B. 1923. Report on tests of self-sterility and cross-incompatibility in plums, cherries and apples at the John Innes Horticultural Institution II. J Pomol Hon Science, 3, 67–84.

    Google Scholar 

  • Cuguen, J, Merzeau, D, and Thiebaut, B. 1989. Genetic structure of the European beech stands Fagus silvatica L. F- statistics and importance of mating system characteristics in their evolution. Heredity, 60, 91–100.

    Article  Google Scholar 

  • Fineschi, S, Gillet, E, and Malvolti, M E. 1990. Genetics of sweet chestnut (Castanea sativa Mill).II. Genetic analysis of zymograms of single tree offspring. Silvae Genetica, 39, 188–193.

    Google Scholar 

  • Frascaria, N, and Lefranc, M. 1992. Le commerce de la châtaigne: un nouvel aspect dans l'étude de la différencia-tion génétique de populations de châtaigniers (Castanea sativa Mill.) en France. Ann Sei Forest, 1, 75–79.

    Article  Google Scholar 

  • Hamrick, J L. 1989. Isozymes and the analysis of genetic structure in plant population. In: Soltis, D. E. and Soltis, P. S. (eds). Isozymes Plant Biology. Discories Press, Portland, pp. 87–105.

    Chapter  Google Scholar 

  • Harris, H, and Hopkinson, D A. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North Holland Publishing Company Inc., New York.

    Google Scholar 

  • Hiebert, R D, and Hamrick, J L. 1982. Patterns and levels of genetic variation in great basin bristlecone pine (Pinus longaeva Bailey). Evolution, 37, 302–310.

    Article  Google Scholar 

  • Kremer, A, Petit, P, Zanetto, A, Fougere, V, Ducousso, A, Wagner, D, and Chauvin, C. 1991. Nuclear and organelle gene diversity in Q. robur and Q. petraea. In: Muller-Starck, G. and Ziette, M. (eds) Genetic Variations in European Forest trees, Saverländer Verlag, 141–166.

    Google Scholar 

  • Lewis, D, and Crowe, L K. 1954. Study of the incompatibility gene. IV types of mutations in Prunus avium L. Heredity, 8 (3), 357–363.

    Article  Google Scholar 

  • Loveless, M D, and Hamrick, J L. 1984. Ecological determinants of genetic structure in plant populations. Ann Rev Syst, 15, 65–95.

    Article  Google Scholar 

  • Meinzel, S, and Market, C L. 1967. Malate dehydrogenase isozymes of the marine snail, Ilyanassa obsoleta. Arch Biochem Biophys, 122, 753–765.

    Article  Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Am Nat, 106, 283–292.

    Article  Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA, 70, 3321–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Am Hum Genet, 41, 225–233.

    Article  CAS  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1986. Definition and estimation of fixation indices. Evolution, 40, 643–645.

    Article  PubMed  Google Scholar 

  • Pigliucci, S, Benedetelli, S, and Villani, F. 1990. Spatial patterns of genetic variability in Italian chestnut (Castanea sativa Mill.). Can J Bot, 9, 1962–1967.

    Article  Google Scholar 

  • Santi, F, and Lemoine, M. 1991. Genetic markers for Prunus avium L.: inheritance and linkage of isozyme loci. Ann Soc For, 47, 131–139.

    Article  Google Scholar 

  • Tanksley, S D, and Rick, C M. 1980. Isozyme gene linkage map of the tomato: applications in genetics and breeding. TheorAppl Genet, 57, 161–170.

    Article  CAS  Google Scholar 

  • Valizadeh, M. 1978. Aspects génétiques et agronomiques de l'étude de la variabilité des protéines chez les plantes supérieures Cas du Ficus carita L. Thesis, USTL Montpellier, France.

    Google Scholar 

  • Villani, F, Malvolti, M E, Fineschi, S, Bimbi, R, and Paciucci, M. 1986. Electrophoretic variations in Castanea sativa M. from Italy. 5th International Congress on Isozymes. Island of Kos, Greece, May 26–29.

  • Wright, S. 1951. The genetical structure of populations. Ann Eugen, 15, 323–354.

    Article  CAS  PubMed  Google Scholar 

  • Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to system of mating. Evolution, 19, 395–420.

    Article  Google Scholar 

  • Yacine, A, and Lumaret, R. 1988. Distribution spaciale des génotypes dans une population de chênes verts (Quercus ilex L.), flux génique et régime de reproduction. Genet Sci Evol, 20, 181–198.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Catherine Bourgeois (IDF, Toulouse, France) for access to the different stands, Madeleine Lefranc (University of Paris XI, Orsay, France) for her valuable technical assistance in carrying out electrophoretic analysis and Peng Li and Paul de la Bastide (University of Laval, St-Foy, Canada) for reviewing the manuscript.

Author information

Authors and Affiliations

  1. Laboratoire d’Evolution et de Systématique des Végétaux, Bât 362, Université de Paris XI-CNRS (U.R.A. 121), Orsay, 91405, France

    N Frascaria & P H Gouyon

  2. Station d’Amélioration des Arbres Forestiers, INRA, Centre de Recherche d’Orleans, Ardon, F-45160, France

    F Santi

Authors
  1. N Frascaria
    View author publications

    Search author on:PubMed Google Scholar

  2. F Santi
    View author publications

    Search author on:PubMed Google Scholar

  3. P H Gouyon
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frascaria, N., Santi, F. & Gouyon, P. Genetic differentiation within and among populations of chestnut (Castanea sativa Mill.) and wild cherry (Prunus avium L.). Heredity 70, 634–641 (1993). https://doi.org/10.1038/hdy.1993.91

Download citation

  • Received: 05 November 1992

  • Issue date: 01 June 1993

  • DOI: https://doi.org/10.1038/hdy.1993.91

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • asexual and sexual propagation
  • Castanea sativa Mill.
  • genetic differentiation
  • isoenzymes
  • Prunus avium L.

This article is cited by

  • Different evolutionary processes in shaping the genetic composition of Dendrobium nobile in southwest China

    • Wenjin Yan
    • Beiwei Hou
    • Xiaoyu Ding

    Genetica (2015)

  • Is the genetic diversity of small scattered forest tree populations at the southern limits of their range more prone to stochastic events? A wild cherry case study by microsatellite-based markers

    • Ioannis Ganopoulos
    • Filippos A. Aravanopoulos
    • Athanasios Tsaftaris

    Tree Genetics & Genomes (2011)

  • Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus

    • Stéphanie Mariette
    • Muriel Tavaud
    • Franck Salin

    BMC Genetics (2010)

  • Genetic structure of Cerasus jamasakura, a Japanese flowering cherry, revealed by nuclear SSRs: implications for conservation

    • Yoshiaki Tsuda
    • Madoka Kimura
    • Yoshihiko Tsumura

    Journal of Plant Research (2009)

  • Distribution and fine-scale spatial-genetic structure in British wild cherry (Prunus avium L.)

    • S P Vaughan
    • J E Cottrell
    • K Russell

    Heredity (2007)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited