Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia)
Download PDF
Download PDF
  • Original Article
  • Published: 01 July 1995

Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia)

  • Emilio Rolán-Alvarez1,
  • Carlos Zapata1 &
  • Gonzalo Alvarez1 

Heredity volume 75, pages 17–25 (1995)Cite this article

  • 1022 Accesses

  • 23 Citations

  • Metrics details

Abstract

A positive relationship between heterozygosity and growth rate, or less frequently, between heterozygosity and fitness components, has been found in many species. A particularly important component of net fitness is sexual selection. However, no studies have been made of the relationship between this character and multilocus heterozygosity in natural populations. In this study, a natural population of the intertidal flat periwinkle Littorina mariae was used to investigate the heterozygosity-sexual fitness relationship. A positive heterozygosity-sexual fitness relationship was found in male L. mariae, but not in females. The selective coefficients acting on the different heterozygosity classes of males ranged between 0.21 and 0.57 (average 0.39), and are similar to those found in previous studies on correlations between heterozygosity and other fitness components. This relationship accounted for approximately 1 per cent of the variance in matings. Furthermore, the contribution of each locus was associated with its homozygosity excess across loci. The positive heterozygosity-sexual fitness relationship showed the same characteristics as the heterozygosity-growth rate correlation. Finally, relationships between sexual selection and size of snail, and heterozygosity and size were found, although they did not account for the heterozygosity-sexual selection relationship.

Similar content being viewed by others

Genetic homogeneity and weak signatures of local adaptation in the marine mussel Mytilus chilensis

Article Open access 10 September 2024

Morphological variation and reproductive isolation in the Hetaerina americana species complex

Article Open access 28 June 2022

A lethal mitonuclear incompatibility in complex I of natural hybrids

Article Open access 10 January 2024

Article PDF

References

  • Alvarez, G, Zapata, C, Amaro, R, and Guerra, A. 1989. Multi-locus heterozygosity and fitness in the European oyster, Ostrea edulis L. Heredity, 63, 359–372.

    Article  Google Scholar 

  • Alvarez, G, Santos, M, and Zapata, C. 1984. Frequency-dependent selection arising from inappropriate fitness estimation. Evolution, 38, 696–699.

    Article  PubMed  Google Scholar 

  • Anderson, W W, and McGuire, P R. 1978. Mating pattern and mating success of Drosophila pseudoobscura karyotypes in large experimental populations. Evolution, 32, 416–423.

    Article  PubMed  Google Scholar 

  • Arnold, S J, and Wade, M J. 1983a. On the measurement of natural and sexual selection: theory. Evolution, 38, 709–719.

    Article  Google Scholar 

  • Arnold, S J, and Wade, M J. 1983b. On the measurement of natural and sexual selection: applications. Evolution, 38, 720–734.

    Article  Google Scholar 

  • Chakraborty, R. 1987. Biochemical heterozygosity and phenotypic variability of polygenic traits. Heredity, 59, 19–28.

    Article  PubMed  Google Scholar 

  • Diehl, W I, and Koehn, R K. 1985. Multiple locus heterozygosity, mortality, and growth in a cohort of Mytilus edulis. Mar Biol, 88, 265–271.

    Article  Google Scholar 

  • Endler, J A. 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Falconer, D S. 1981. Introduction to Quantitative Genetics, 2nd edn. Longman, London.

    Google Scholar 

  • Fretter, V, and Graham, A. 1980. The prosobranch molluscs of Britain and Denmark. Part 5. Marine Littorinaceae. J Moll Stud, Suppl 7, 243–284.

    Google Scholar 

  • Gaffney, P M, Scott, T M, Koehn, R K, and Diehl, W J. 1990. Interrelationships of heterozygosity, growth rate and heterozygote deficiencies in the coot clam, Mulinia lateralis. Genetics, 124, 687–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gajardo, G M, and Beardmore, J A. 1989. Ability to Switch reproductive mode in Artemia is related to maternal heterozygosity. Mar Ecol Prog Ser, 55, 191–195.

    Article  Google Scholar 

  • Goodwin, B J, and Fish, J D. 1977. Inter and intra specific variation in L. obtusata and L. mariae. J Moll Stud, 43, 241–254.

    Google Scholar 

  • Janson, K. 1982. Genetic and environmental effects on the growth rate of Littorina saxatilis Olivi. Mar Biol, 69, 73–78.

    Article  Google Scholar 

  • Johannesson, K, Rolán-Alvarez, E, and Ekendahl, A. (in press). Incipient reproductive isolation between two sympatric morphs of the intertidal snail Littorina saxatilis. Evolution

  • Knoppien, P. 1985. Rare male mating advantage: a review. Biol Rev, 60, 81–117.

    Article  Google Scholar 

  • Koehn, R K. 1990. Heterozygosity and growth in marine bivalves, comments on the paper by Zouros, RomeroDorey and Mallet (1988). Evolution, 44, 213–216.

    Article  PubMed  Google Scholar 

  • Koehn, R K, and Gaffney, P M. 1984. Genetic heterozygosity and growth rate in Mytilus edulis. Mar Biol, 82, 1–7.

    Article  Google Scholar 

  • Linhart, Y B, and Mitton, J B. 1985. Relationships among reproduction, growth rates, and protein heterozygosity in Ponderosa pine. Am J Bot, 11, 181–184.

    Article  Google Scholar 

  • McAlpine, S. 1993. Genetic heterozygosity and reproductive success in the green treefrog, Hyla cinerea. Heredity, 70, 553–558.

    Article  Google Scholar 

  • Merrell, D J. 1950. Measurement of sexual isolation and selective mating. Evolution, 4, 326–331.

    Article  Google Scholar 

  • Mitton, J B, and Grant, M C. 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann Rev Ecol Syst, 15, 479–499.

    Article  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Donald, P. 1980. Genetic Models of Sexual Selection. Cambridge University Press, London.

    Google Scholar 

  • Pogson, G H, and Zouros, E. 1994. Auozyme and RFLP heterozygosities as correlates of growth rate in the scallop Placopecten magellanicus, a test of the associative over-dominance hypothesis. Genetics, 137, 221–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prout, T. 1965. The estimation of fitnesses from genotypic frequencies. Evolution, 19, 546–551.

    Article  Google Scholar 

  • Reid, D G. 1990. Note on the discrimination of females of Littorina mariae Sacchi and Rastelli and L. obtusata (Linnaeus). J Moll Stud, 56, 113–114.

    Article  Google Scholar 

  • Rice, W R. 1989. Analyzing tables of statistical tests. Evolution, 43, 223–225.

    Article  PubMed  Google Scholar 

  • Rodhouse, P G, McDonald, J H, Newell, R I E, and Koehn, R K. 1986. Gamete production, somatic growth and multiple-locus enzyme heterozygosity in Mytilus edulis. Mar Biol, 90, 209–214.

    Article  Google Scholar 

  • Rolán-Alvarez, E. 1992. A method of breeding Littorina obtusata (L.) and L. mariae Sacchi and Rastelli: preliminary results. In: Grahame, J., Mill, P. J. and Reid, D. G. (eds) Proceedings of the Third International Symposium on Littorinid Biology, pp. 163–167. The Malacological Society of London, London.

    Google Scholar 

  • Rolán-Alvarez, E. 1993. Estructura Genética y Seleccion Sexual en Poblaciones Naturales de dos Especies Gemelas del Genero Littorina. Ph.D. Thesis, Universidad de Santiago de Compostela.

    Google Scholar 

  • Rolán-Alvarez, E, Zapata, C, and Alvarez, G. 1995. Distinct genetic subdivision in sympatric and sibling species of the genus Littorina (Gastropoda: Littorinidae). Heredity, 74, 1–9.

    Article  PubMed  Google Scholar 

  • Santos, M, Tarrio, R, Zapata, C, and Alvarez, G. 1990. Sexual selection on chromosomal polymorphism in Drosophila subobscura. Heredity, 57, 161–169.

    Article  Google Scholar 

  • Siegel, S, and Castellan, N J. 1988. Non-parametric Statistics for the Behavioral Sciences. Mcgraw-Hill, New York.

    Google Scholar 

  • Singh, S M, and Zouros, E. 1978. Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). Evolution, 32, 342–353.

    Article  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1981. Biometry, 2nd edn. W. H. Freeman, San Francisco.

    Google Scholar 

  • Spieth, H T, and Ringo, J M. 1983. Mating behavior and sexual isolation in Drosophila. In: Ashburner, M., Carson, H. L. and Thompson, J. N., Jr (eds) The Genetics and Biology of Drosophila, 3c, pp. 223–284. Academic Press, London.

    Google Scholar 

  • Ward, R D, Warwick, T, and Knight, A J. 1986. Genetic analysis of ten polymorphic enzyme loci in Littorina saxatilis (Prosobranchia, Mollusca). Heredity, 57, 223–241.

    Article  Google Scholar 

  • Ward, R D, Warwick, T, and Knight, A J. 1991. Further genetic analysis of polymorphic enzyme loci in Littorina saxatilis (Prosobranchia, Mollusca). Heredity, 66, 151–158.

    Article  Google Scholar 

  • Williams, G A. 1992. The effect of predation on the life histories of Littorina obtusata and L. mariae. J Mar Biol Ass UK, 72, 403–416.

    Article  Google Scholar 

  • Zapata, C, Gajardo, G, and Beardmore, J A. 1990. Multilocus heterozygosity and sexual selection in the brine shrimp Artemiafranciscana. Mar Ecol Prog Ser, 62, 211–217.

    Article  Google Scholar 

  • Zaslavskaya, N I, Sergievsky, S O, and Tatarenkov, A N. 1992. Allozyme similarity of Atlantic and Pacific species of Littorina (Gastropoda, Littorinidae). J Moll Stud, 58, 377–384.

    Article  Google Scholar 

  • Zaykin, D V, and Pudovkin, A I. 1993. Two programs to estimate significance of X2 values using pseudo-probability tests. J Hered, 84, 152.

    Article  Google Scholar 

  • Zouros, E. 1987. On the relation between heterozygosity and heterosis, an evaluation of evidence from marine mollusks. Isozymes Curr Top Biol Med Res, 15, 255–270.

    CAS  PubMed  Google Scholar 

  • Zouros, E. 1993. Associative overdominance: evaluating the effects of inbreeding and linkage disequilibrium. Genetica, 89, 35–46.

    Article  Google Scholar 

  • Zouros, E, and Foltz, D W. 1987. The use of allelic isozyme variation for the study of heterosis. Isozymes Curr Top Biol Med Res, 13, 1–59.

    CAS  PubMed  Google Scholar 

  • Zouros, E, and Mallet, A L. 1989. Genetic explanations of the growth/heterozygosity correlation in marine mollusks. In: Ryland, J. S. and Tyler, P. A. (eds) Reproduction, Genetics and Distributions of Marine Organisms, pp. 317–324. Olsen and Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Zouros, E, and Pogson, G H. 1994. The present status of the relationship between heterozygosity and heterosis. In: Beaumont, A. R. (ed.) Genetics and Evolution of Aquatic Organisms, pp. 135–146. Chapman and Hall, London.

    Google Scholar 

  • Zouros, E, Singh, S M, Foltz, D W, and Mallet, A L. 1983. Post-settlement viability in the American oyster (Crassostrea virginica): an overdominant phenotype. Genet Res, 41, 259–270.

    Article  Google Scholar 

Download references

Acknowledgements

One of us (E. R.-A.) thanks D. Mayo and H. Quesada for help during sampling, H. Quesada and C. Saavedra for general discussions of K. Johannesson and two anonymous referees for improving a version of the manuscript. Philip Mason improved the English of a later version. E. R.-A. was suported by a fellowship from the XUNTA DE GAUCIA and the University of Santiago.

Author information

Authors and Affiliations

  1. Departamento de Biología Fundamental (Genética), Facultad de Biología, Universidad de Santiago de Compostela, Santiago, 15706, Spain

    Emilio Rolán-Alvarez, Carlos Zapata & Gonzalo Alvarez

Authors
  1. Emilio Rolán-Alvarez
    View author publications

    Search author on:PubMed Google Scholar

  2. Carlos Zapata
    View author publications

    Search author on:PubMed Google Scholar

  3. Gonzalo Alvarez
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolán-Alvarez, E., Zapata, C. & Alvarez, G. Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia). Heredity 75, 17–25 (1995). https://doi.org/10.1038/hdy.1995.99

Download citation

  • Received: 14 September 1994

  • Issue date: 01 July 1995

  • DOI: https://doi.org/10.1038/hdy.1995.99

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • associative overdominance hypothesis
  • fitness estimates
  • heterosis
  • mate selection
  • size

This article is cited by

  • Premating barriers in young sympatric snail species

    • Arina L. Maltseva
    • Marina A. Varfolomeeva
    • Andrei I. Granovitch

    Scientific Reports (2021)

  • Sexual selection and non-random mating for shell colour in a natural population of the marine snailLittorina mariae (Gastropoda: Prosobranchia)

    • Emilio Rol�n-Alvarez
    • Anette Ekendahl

    Genetica (1996)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited