Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Behaviour of the transposable elements copia and mdg1 in hybrids between the sibling species Drosophila melanogaster and D. simulans
Download PDF
Download PDF
  • Original Article
  • Published: 01 July 1996

Behaviour of the transposable elements copia and mdg1 in hybrids between the sibling species Drosophila melanogaster and D. simulans

  • M P Garcia Guerreiro1 nAff2 

Heredity volume 77, pages 40–46 (1996)Cite this article

  • 585 Accesses

  • 1 Citations

  • Metrics details

Abstract

The behaviour of the retrotransposons copia and mdg1 was analysed in hybrids between Drosophila melanogaster and D. simulans. Females of a highly inbred line of D. melanogaster were crossed with D. simulans males from three natural populations. The insertion site profiles for the two elements were determined in F1 hybrid larvae by in situ hybridization to polytene chromosomes, and were compared with that of their parents. No somatic transposition events were detected after this genomic stress of interspecific hybridization for the two transposable elements concerned.

Similar content being viewed by others

Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors

Article 03 December 2021

Seasonal changes in recombination characteristics in a natural population of Drosophila melanogaster

Article 23 June 2021

Comparative transcriptomics between Drosophila mojavensis and D. arizonae reveals transgressive gene expression and underexpression of spermatogenesis-related genes in hybrid testes

Article Open access 10 May 2021

Article PDF

References

  • Ananiev, E V, and Ilyin, Y V. 1981. A comparative study of the location of mobile dispersed genes in salivary gland and midgut polytene chromosomes of Drosophila melanogaster. Chromosoma, 82, 429–435.

    Article  CAS  Google Scholar 

  • Biemont, C. 1994. Dynamic equilibrium between insertion and excision of P elements in highly inbred lines from an M' strain of Drosophila melanogaster. J Mol Evol, 39, 466–472.

    Article  CAS  Google Scholar 

  • Biemont, C, and Aouar, A. 1987. Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity, 58, 39–47.

    Article  Google Scholar 

  • Blackman, R H, and Kelbart, W M. 1989. The transposable element hobo of Drosophila melanogaster. In: Berg, D. E. and Howe, M. M. (eds) Mobile DNA, pp. 523–529. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Bock, I R. 1984. Interspecific hybridization in the genus Drosophila. Evol Biol, 18, 41–70.

    Article  Google Scholar 

  • Coen, E S, Robbins, T P, Almeida, J, Hudson, A, and Carpenter, R. 1989. Consequences and mechanisms of transposition in Antirrhinum majus. In: Berg, D. E. and Howe, M. M. (eds) Mobile DNA, pp. 413–436. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Crow, J F. 1984. The P factor: a transposable element in Drosophila. In: Chu, E. H. Y. and Generoso, W. M. (eds) Mutation, Cancer and Malformation, pp. 257–273. Plenum Press, New York.

    Chapter  Google Scholar 

  • Di Franco, C, Pisano, C, Dimitri, P, Gigliotti, S, and Junakovic, N. 1989. Genomic distribution of copia-like transposable elements in somatic tissues and during development of Drosophila melanogaster. Chromosoma, 98, 402–410.

    Article  CAS  Google Scholar 

  • Dunsmuir, P, Brorein, W J, Jr, Simon, M A, and Rubin, G M. 1980. Insertion of the Drosophila transposable element copia generates a 5 base pair duplication. Cell, 21, 575–579.

    Article  CAS  Google Scholar 

  • Emmons, S W, and Yesner, L. 1984. High-frequency excision of transposable element Tel in the nematode Caenorhabditis elegans. Cell, 36, 599–605.

    Article  CAS  Google Scholar 

  • Evgen'Ev, M B, Yenikolopov, G N, Peunova, N I, and Ilyin, Y V. 1982. Transposition of mobile genetic elements in interspecific hybrids of Drosophila. Chromosoma, 85, 373–386.

    Article  Google Scholar 

  • Federoff, N V. 1989. Maize transposable elements. In: Berg, D. E. and Howe, M. M. (eds) Mobile DNA, pp. 375–412. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Fontdevila, A. 1993. Genetic instability and rapid speciation: are they coupled? In: MacDonald, J. F. (ed.) Transposable Elements and Evolution, pp. 242–253. Kluwer Academic Publishers, Netherlands.

    Chapter  Google Scholar 

  • Garcia Guerreiro, M P, and Biemont, C. 1995. Changes in the chromosomal insertion pattern of the copia element during the process of making chromosomes homozygous in Drosophila melanogaster. Mol Gen Genet, 246, 206–211.

    Article  CAS  Google Scholar 

  • Georgiev, P G, Kiselev, S L, Simonova, O B, and Gerasimova, T I. 1990. A novel transposition system in Drosophila melanogaster depending on the Stalker mobile genetic element. EMBO J, 9, 2037–2044.

    Article  CAS  Google Scholar 

  • Gerstel, D U, and Burns, J A. 1966. Chromosomes of unusual length in hybrids between two species of Nicotiana. Today, 1, 41–56.

    Google Scholar 

  • Getz, D, and Van Schaik, N. 1991. Somatic mutation in the wings of Drosophila melanogaster females dysgenic due to P elements when reared at 29°C. Mutat Res, 248, 187–194.

    Article  CAS  Google Scholar 

  • Hartl, D L. 1989. Transposable element mariner in Drosophila species. In: Berg, D. E. and Howe, M. M. (eds) Mobile DNA, pp. 531–536. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Ilyin, Y V, Chemeliauskaite, V G, and Georgiev, G P. 1980. Double-stranded sequences in RNA of Drosophila melanogaster: relation to mobile dispersed genetic genes. Nucleic Acids Res, 8, 3439–3457.

    Article  CAS  Google Scholar 

  • Kim, A I, and Belyaeva, E S. 1991a. Direct demonstration of the transposition of mobile element mdg4 in the sex and somatic cells of the unstable mutator line of Drosophila melanogaster. Dokl Biol Sci, 314, 595–598.

    Google Scholar 

  • Kim, A I, and Belyaeva, E S. 1991b. Transposition of mobile elements gypsy (mdg4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of Drosophila melanogaster. Mol Gen Genet, 229, 437–444.

    Article  CAS  Google Scholar 

  • Labrador, M, and Fontdevila, A. 1994. High transposition rates of Osvaldo, a new Drosophila buzzatii retrotransposon. Mol Gen Genet, 245, 661–674.

    Article  CAS  Google Scholar 

  • Lee, W L. 1978. Temperature sensitive viability of hybrids between Drosophila melanogaster and Drosophila simulans. Jap J Genet, 53, 339–344.

    Article  Google Scholar 

  • Levis, R, Dunsmuir, P, and Rubin, G M. 1980. Terminal repeats of the Drosophila transposable element copia: nucleotide sequence and genomic organization. Cell, 21, 581–588.

    Article  CAS  Google Scholar 

  • McDonald, J. 1990. Macroevolution and retroviral elements. Bioscience, 40, 183–191.

    Article  Google Scholar 

  • Moerman, D G, and Waterson, R H. 1989. Mobile elements in Caenorhabditis elegans and other nematodes. In: Berg, D. E. and Howe, M. M. (eds) Mobile DNA, pp. 537–556. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Naveira, H, and Fontdevila, A. 1985. The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma, 91, 87–94.

    Article  CAS  Google Scholar 

  • Pasyukova, E G, and Nuzhdin, S V. 1993. Doc and copia instability in an isogenic Drosophila melanogaster stock. Mol Gen Genet, 240, 302–306.

    Article  CAS  Google Scholar 

  • Pasyukova, E G, Belyaeva, E S, Ilyinskaya, L E, and Gvozdev, V A. 1988. Outcross-dependent transpositions of copia-like mobile genetic elements in chromosomes of an inbred Drosophila melanogater stock. Mol Gen Genet, 212, 281–286.

    Article  CAS  Google Scholar 

  • Pontecorvo, G. 1943. Hybrid sterility in artificially produced recombinants between Drosophila melanogaster and D. simulans. Proc R Soc Edinb Sect B, 61, 385–397.

    Google Scholar 

  • Price, H J. 1988. Nuclear DNA content variation within angiosperm species. Evol Trends Plants, 2, 53–60.

    Google Scholar 

  • Rayburn, A L, Biradar, D P, Bullock, D G, and McMurphy, L M. 1993. Nuclear DNA content in F1 hybrids of maize. Heredity, 70, 294–300.

    Article  CAS  Google Scholar 

  • Seperack, P K, Strobel, M C, Corrow, D J, Jenkins, N A, and Copeland, N G. 1988. Somatic and germ-line reverse mutation rates of the retrovirus-induced dilute coat-color mutation of DBA mice. Proc Natl Acad Sci USA, 85, 189–192.

    Article  CAS  Google Scholar 

  • Sturtevant, A H. 1929. The genetics of Drosophila simulans. Carnegie Inst. Wash. Publ., 399, 1–62.

  • Sturtevant, A H. 1939. High mutation frequency induced by hybridization. Proc Natl Acad Sci USA, 25, 308–310.

    Article  CAS  Google Scholar 

  • Tchurikov, N A, Ilyin, Y V, Skryabin, K G, Ananiev, E V, Bayev, A A, Jr, Lyubomirskaya, N V, and Georgiev, G P. 1980. General properties of mobile dispersed genetic elements in Drosophila melanogaster. Cold Spring Harbor Symp Quant Biol, 45, 655–665.

    Article  Google Scholar 

  • Watanabe, T K, Lee, W H, Inoue, Y, and Kaganishi, M. 1977. Genetic variation of the hybrid crossability between Drosophila melanogaster and Drosophila simulans. Jap J Genet, 52, 1–8.

    Article  Google Scholar 

  • Woodruff, R C. 1992. Transposable DNA elements and life history traits I. Transposition of P DNA elements in somatic cells reduces the lifespan of Drosophila melanogaster. Genetica, 86, 143–154.

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. M P Garcia Guerreiro

    Present address: Departament de Genètica i Microbiologia, Unitat de Genètica, Edifici C, Universitat Autònoma de Barcelona, 08193, Bellaterra-Barcelona, Spain

Authors and Affiliations

  1. Laboratoire de Biométrie, Génétique et Biologie des populations, URA CNRS 2055, Université Claude Bernard Lyon 1, Villeurbanne Cedex, 69622, France

    M P Garcia Guerreiro

Authors
  1. M P Garcia Guerreiro
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerreiro, M. Behaviour of the transposable elements copia and mdg1 in hybrids between the sibling species Drosophila melanogaster and D. simulans. Heredity 77, 40–46 (1996). https://doi.org/10.1038/hdy.1996.106

Download citation

  • Received: 29 August 1995

  • Issue date: 01 July 1996

  • DOI: https://doi.org/10.1038/hdy.1996.106

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Drosophila melanogaster
  • D. simulans
  • interspecific hybrids
  • transposable elements
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited