Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Suppression of powdery mildew resistance gene Pm8 in Triticum aestivum L. (common wheat) cultivars carrying wheat-rye tranlocation T1BL·1RS
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 1996

Suppression of powdery mildew resistance gene Pm8 in Triticum aestivum L. (common wheat) cultivars carrying wheat-rye tranlocation T1BL·1RS

  • Renata Hanušová1,
  • Sai L K Hsam2,
  • Pavel Bartoš1 &
  • …
  • Friedrich J Zeller2 

Heredity volume 77, pages 383–387 (1996)Cite this article

  • 1041 Accesses

  • 38 Citations

  • Metrics details

Abstract

Disease response pattern of 127 T1B·1RS translocation and substitution wheat cultivars, possessing powdery mildew resistance gene Pm8 and leaf rust resistance gene Lr26 located on rye chromosome arm IRS, revealed that sixteen of these cultivars express Lr26, but not concomitant Pm8 resistance. The mode of inheritance studied in the F1, F2 and F3 generations, and involving hybrids of cultivars Agra, Florida, Olymp, Sabina and Tjelvar not expressing Pm8 resistance indicated inhibition of resistance gene Pm8 by a dominant suppressor.

Similar content being viewed by others

Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits

Article Open access 21 June 2024

The wheat powdery mildew resistance gene Pm4 also confers resistance to wheat blast

Article Open access 19 June 2024

An NLR pair in the Pm68 locus confers powdery mildew resistance in durum and common wheat

Article Open access 10 October 2025

Article PDF

References

  • Bai, D, and Knott, D R. 1992. Suppression of rust resistance in bread wheat (Triticum aestivum L.) by D-genome chromosomes. Genome, 35, 276–282.

    Article  Google Scholar 

  • Bartoš, P. 1993. Chromosome 1R of rye in wheat breeding. Pl Breed Abst, 63, 1203–1211.

    Google Scholar 

  • Bartoš, P, and Bareš, I. 1971. Leaf and stem rust resistance of hexaploid wheat cultivars Salzmünder Bartweizen and Weique. Euphytica, 20, 435–440.

    Article  Google Scholar 

  • Chevre, A M, Jahier, J, and Trottet, M. 1989. Expression of disease resistance genes in amphiploid wheats-Triticum tauschii (Coss.) Schmal. Cereal Res Comm, 17, 23–29.

    Google Scholar 

  • Friebe, B, Heun, M, and Bushuk, W. 1989. Cytological characterization, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL/1RS wheat-rye translocation lines. Theor Appl Genet, 78, 425–432.

    Article  CAS  Google Scholar 

  • Gill, B S, Raupp, W J, Sharma, H C, Brouder, L E, Hatchett, J H, Harvey, T L. et al. 1986. Resistance in Aegilops squanosa to wheat leaf rust, wheat powdery mildew, green bug and Hessian fly. Pl Dis, 70, 553–556.

    Article  Google Scholar 

  • Hanušová, R. 1992. Powdery mildew resistance of wheat cultivars with 1B/1R translocation/substitution. Proceedings of the 8th European Mediterranean Cereal Rusts Mildews Conference, Vorträge Pflanzenzüchtg, 24, pp. 237–238.

    Google Scholar 

  • Jönsson, J Ö. 1991. Wheat breeding against facultative pathogens. Sverig Utsädesf Tidsk, 101, 89–93.

    Google Scholar 

  • Kerber, E R. 1983. Suppression of rust resistance in amphiploids of Triticum. Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, Japan, pp. 813–817.

  • Kerber, E R, and Dyck, P L. 1969. Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol, 11, 639–647.

    Article  Google Scholar 

  • Kerber, E R, and Dyck, P L. 1979. Resistance of stem and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. Proceedings of the 5th International Wheat Genetics Symposium, New Delhi, India, pp. 358–364.

  • Kerber, E R, and Green, G J. 1980. Suppression of stem rust resistance in the hexaploid wheat cv. Canthatch by chromosome 7DL. Can J Bot, 58, 1347–1350.

    Article  Google Scholar 

  • Kema, G H J, Lange, W, and Van Silfhout, C H. 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squanosa. Phytopathology, 85, 425–429.

    Article  Google Scholar 

  • Lutz, J, Limpert, E, Bartoš, P, and Zeller, F J. 1992. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I. Czechoslovakian cultivars. Pl Breed, 108, 33–39.

    Article  Google Scholar 

  • Lutz, J, Hsam, S L K, Limpert, E, and Zeller, F J. 1994. Powdery mildew resistance in Aegilops tauschii Coss. and synthetic hexaploid wheat. Genet Res Crop Evol, 41, 151–158.

    Article  Google Scholar 

  • Lutz, J, Katzhammer, M, Stephan, U, Felsenstein, F G, Oppitz, K, and Zeller, F J. 1995. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.). V. Old German cultivars and cultivars released in the former GDR. Pl Breed, 114, 29–33.

    Article  CAS  Google Scholar 

  • Ma, H, Singh, R P, and Mujeeb-Kazi, A. 1995. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica, 83, 87–93.

    Article  Google Scholar 

  • McIntosh, R A, Hart, G, and Gale, M. 1993. Catalogue of gene symbols for wheat. In: Proceedings of the 6th International Wheat Genetics Symposium, Beijing, China, pp. 1333–1500.

  • Mettin, D, Blüthner, W D, and Schlegel, G. 1973. Additional evidence on spontaneous 1BL/1RS wheatrye substitution. In: Proceedings of the 4th International Wheat Genetics Symposium, Columbia, USA, pp. 179–184.

  • Siedler, H, Obst, A, Hsam, S L K, and Zeller, F J. 1994. Evaluation for resistance to Pyrenophora tritici-repentis in Aegilops tauschii Coss. and synthetic hexaploid wheat amphiploids. Genet Res Crop Evol, 41, 27–34.

    Article  Google Scholar 

  • Singh, N K, Shepherd, K W, and McIntosh, R A. 1990. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and cusecalins on the short arm of rye chromosome 1R. Theor Appl Genet, 80, 609–616.

    Article  CAS  Google Scholar 

  • Trottet, J, Jahier, J, and Tanguy, A M. 1982. A Study of an amphiploid between Aegilops squarrosa Tausch, and Triticum dicoccum Schübl. Cereal Res Comm, 10, 55–59.

    Google Scholar 

  • Valkoun, J, Dostál, J, and Kučerová, D. 1990. Triticum × Aegilops hybrids through embryo culture. In: Bajaj, Y.P.S. (ed.) Biotechnology in Agriculture and Forestry, 13, Wheat, pp. 152–166. Springer, Berlin.

    Google Scholar 

  • Villareal, R L, Mujeeb-Kazi, A, Rajaram, S, and Del-Toro, E. 1991. The effects of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.) Pl Breed, 106, 77–81.

    Article  Google Scholar 

  • Wienhues, A. 1965. Cytogenetische Untersuchungen über die chromosomale Grundlage der Rostresistenz der Weizensorte Weique. Züchter, 35, 352–354.

    Article  Google Scholar 

  • Zeller, F J. 1973. 1B/1R wheat-rye chromosome substitutions and translocations. Proceedings of the 4th International Wheat Genetics Symposium, Columbia, USA, pp. 209–221.

  • Zeller, F J, Lutz, J, Remlein, E I, Limpert, E, and Koenig, J. 1993. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). II. French cultivars. Agronomie, 13, 201–207.

    Article  Google Scholar 

  • Zeven, A C, and Zeven-Hissink, N C. 1976. Genealogies of 14,000 wheat varieties Netherlands Cereal Centre, Wageningen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Research Institute of Crop Production, CZ-16106 Praha 6 — Ruzyně, Czech Republic

    Renata Hanušová & Pavel Bartoš

  2. Technische Universität München, Institut für Pflanzenbau und Pflanzenzüchtung, Freising-Weihenstephan, D-85350, Germany

    Sai L K Hsam & Friedrich J Zeller

Authors
  1. Renata Hanušová
    View author publications

    Search author on:PubMed Google Scholar

  2. Sai L K Hsam
    View author publications

    Search author on:PubMed Google Scholar

  3. Pavel Bartoš
    View author publications

    Search author on:PubMed Google Scholar

  4. Friedrich J Zeller
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanušová, R., Hsam, S., Bartoš, P. et al. Suppression of powdery mildew resistance gene Pm8 in Triticum aestivum L. (common wheat) cultivars carrying wheat-rye tranlocation T1BL·1RS. Heredity 77, 383–387 (1996). https://doi.org/10.1038/hdy.1996.157

Download citation

  • Received: 10 October 1995

  • Issue date: 01 October 1996

  • DOI: https://doi.org/10.1038/hdy.1996.157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Pm8 suppressor gene
  • powdery mildew resistance
  • Secale cereale
  • Triticum aestivum
  • wheat-rye translocation

This article is cited by

  • Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection

    • Abdulsalam Dakouri
    • Brent D. McCallum
    • Sylvie Cloutier

    Molecular Breeding (2013)

  • Suppression of stripe rust and leaf rust resistances in interspecific crosses of wheat

    • Wanquan Chen
    • Taiguo Liu
    • Li Gao

    Euphytica (2013)

  • Partial resistance to powdery mildew in German spring wheat ‘Naxos’ is based on multiple genes with stable effects in diverse environments

    • Qiongxian Lu
    • Åsmund Bjørnstad
    • Morten Lillemo

    Theoretical and Applied Genetics (2012)

  • Rye-derived powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus

    • Robert A. McIntosh
    • Peng Zhang
    • Sami Hoxha

    Theoretical and Applied Genetics (2011)

  • Biochemical and genetic studies of two Heterodera avenae resistance genes transferred from Aegilops ventricosa to wheat

    • M. J. Montes
    • I. López-Braña
    • A. Delibes

    Theoretical and Applied Genetics (2003)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited