Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Unusual mitochondrial genome in introduced and native populations of Listronotus bonariensis (Kuschel)
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1996

Unusual mitochondrial genome in introduced and native populations of Listronotus bonariensis (Kuschel)

  • C Lenney Williams1 nAff3,
  • S L Goldson2 &
  • D W Bullock1 

Heredity volume 77, pages 565–571 (1996)Cite this article

  • 706 Accesses

  • Metrics details

Abstract

The Argentine stem weevil is a serious pest of pasture and other graminaceous crops in New Zealand. Fifteen populations from South America, New Zealand and Australia were examined in an effort to determine the geographical origin of the species in New Zealand. Our previously reported RAPD analysis of these populations (Williams et al., 1994) revealed that the source of the pest was the Rio de la Plata on the east coast of South America. As a second approach to examining genetic variation, RFLP analysis of the mitochondrial genome, using the digoxigenin-labelled boll weevil mitochondrial genome as a probe, was also performed. The mitochondrial analysis revealed that the species possesses an unusually large mitochondrial genome of 32 kb, which exhibits extremely low levels of polymorphism both in the introduced and native populations. This low variation is in contrast with the informative level of inter- and intrapopulation variation revealed by RAPD.

Similar content being viewed by others

Aridification and major geotectonic landscape change shaped an extraordinary species radiation across a world’s extreme elevational gradient

Article Open access 13 November 2024

High intragenomic, intergenomic, and phenotypic diversity in pulcherrimin-producing Metschnikowia yeasts indicates a special mode of genome evolution

Article Open access 08 May 2024

Drivers of interlineage variability in mitogenomic evolutionary rates in Platyhelminthes

Article 02 August 2024

Article PDF

References

  • Aagaard, J E, Vollmer, S S, Sorenson, F C, and Strauss, S H. 1995. Mitochondrial DNA products among RAPD profiles are frequent and strongly differentiated between races of Douglas-fir. Mol Ecol, 4, 441–447.

    Article  CAS  PubMed  Google Scholar 

  • Avise, J C, Arnold, J, Ball, R M, Bermingham, E, Lamb, T, Neigel, J E. et al. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst, 18, 489–522.

    Article  Google Scholar 

  • Baba-Aïssa, F, Solignac, M, Dennebouy, N, and David, J R. 1988. Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of three cytoplasmic races. Heredity, 61, 419–426.

    Article  PubMed  Google Scholar 

  • Boehringer-Mannheim. 1993. The DIG System User's Guide for Filter Hybridization. Boehringer Mannheim GmbH Biochemica, Mannheim.

    Google Scholar 

  • Boyce, T M, Zwick, M E, and Aquadro, C F. 1989. Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics, 123, 825–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, J R, Beckenbach, A T, and Smith, M J. 1992. Mitochondrial DNA length variation and heteroplasmy in populations of white sturgeon (Acipenser transmontanus). Genetics, 132, 221–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapco, W, Kelln, R A, and Mcfadyen, D A. 1992. Intraspecific mitochondrial DNA variation in the migratory grasshopper, Melanoplus sanguinipes. Heredity, 69, 547–557.

    Article  Google Scholar 

  • Clary, D O, and Wolstenholme, D R. 1985. The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J Mol Evol, 22, 252–271.

    Article  CAS  PubMed  Google Scholar 

  • Goldson, S L, and Emberson, R M. 1980. Relict diapause in an introduced weevil in New Zealand. Nature, 286, 489–490.

    Article  Google Scholar 

  • Grant, W S, and Leslie, R W. 1993. Effect of meta-population structure on nuclear and organellar DNA variability in semi-arid environments of southern Africa. S Af J Sci, 89, 287–293.

    Google Scholar 

  • Gyllensten, U, Wharton, D, Josefsson, A, and Wilson, A C. 1991. Paternal inheritance of mitochondrial DNA in mice. Nature, 352, 255–257.

    Article  CAS  PubMed  Google Scholar 

  • Hoeh, W R, Blakley, K H, and Brown, W M. 1991. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science, 251, 1488–1490.

    Article  CAS  PubMed  Google Scholar 

  • Kambhampati, S, and Rai, K. 1991. Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome, 34, 288–292.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, R, Satta, Y, Matsuura, E T, Ishiwa, H, Taka-Hata, N, and Chigusa, S I. 1990. Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics, 126, 657–663.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lansman, R A, Avise, J C, Aquardo, C F, Shapira, J F, and Daniel, S W. 1983. Extensive genetic variation in mitochondrial DNAs among geographic populations of the deer mouse, Peromyscus maniculatus. Evolution, 37, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Latorre, A, Hernández, C, Martínez, D, Castro, J A, Ramón, M, and Moya, A. 1992. Population structure and mitochondrial DNA gene flow in Old World populations of Drosophila subobscura. Heredity, 68, 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, M, Weihe, A, and Börner, T. 1994. DNA fragments of organellar origin in random amplified polymorphic DNA (RAPD) patterns of sugar beet (Beta vulgaris L.). Theor Appl Genet, 88, 775–779.

    Article  CAS  PubMed  Google Scholar 

  • Moritz, C, Dowling, T E, and Brown, W M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann Rev Ecol Syst, 18, 269–292.

    Article  Google Scholar 

  • Nigro, L. 1988. Natural populations of Drosophila simulans show great uniformity of the mitochondrial DNA restriction map. Genetica, 77, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • O'Ryan, C, and Harley, E H. 1993. Comparisons of mitochondrial DNA in black and white rhinoceroses. J Mammal, 74, 343–346.

    Article  Google Scholar 

  • Prestidge, R A, Barker, G M, and Pottinger, R P. 1991. The economic cost of Argentine stem weevil in pastures in New Zealand. Proc 44th New Zealand Weed and Pest Control Conference, pp. 165–170.

  • Rand, D M, and Harrison, R G. 1989. Molecular population genetics of mtDNA size variation in crickets. Genetics, 121, 551–569.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roehrdanz, R L. 1989. Intraspecific genetic variability in mitochondrial DNA of the screwworm fly (Cochliomyia hominivorax). Biochem Genet, 27, 551–569.

    Article  CAS  PubMed  Google Scholar 

  • Roehrdanz, R L, and Johnson, D A. 1988. Mitochondrial DNA variation among geographical populations of the screwworm fly, Cochliomyia hominivorax. J Med Entomoi, 25, 136–141.

    Article  CAS  Google Scholar 

  • Roehrdanz, R L, and North, D L. 1992. Mitochondrial DNA restriction fragment variation and biosystematics of the boll weevil, Anthonomus grandis. Southwestern Entomologist, 17, 101–108.

    Google Scholar 

  • Sambrook, J, Fritsch, E F, and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Saunders, N C, Kessler, L G, and Avise, J C. 1986. Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Limulus polyphemus. Genetics, 112 613–627.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer, H E, and Sederoff, R R. 1981. Improved estimation of DNA fragment lengths from agarose gels. Analyt Biochem, 115, 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Sheppard, W S, Steck, G J, and McPheron, B A. 1992. Geographic populations of the medfly may be differentiated by mitochondrial DNA variation. Experientia, 48, 1010–1013.

    Article  Google Scholar 

  • Simon, C, McIntosh, C, and Deniega, J. 1993. Standard restriction fragment length analysis of the mitochondrial genome is not sensitive enough for phylogenetic analysis or identification of 17-year periodical cicada broods: the potential for a new technique. Ann Entomoi Soc Am, 86, 228–238.

    Article  Google Scholar 

  • Simon, C, Frati, F, Beckenbach, A, Crespi, B, Liu, H, and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomoi Soc Am, 87, 651–701.

    Article  CAS  Google Scholar 

  • Skibinski, D O F, Gallagher, C, and Beynon, C M. 1994. Sex-limited mitochondrial DNA transmission in the marine mussel Mytilus edulis. Genetics, 138, 801–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrini, A, Schurr, T G, Yang, C-C, Szathmary, E J E, Williams, R C, Schanfield, M S. et al. 1992. Native American mitochondrial DNA analysis indicates that the Amerind and the Nadene populations were founded by two independent migrations. Genetics, 130, 153–162.

    Google Scholar 

  • Waldman, J R, and Wirgin, I I. 1994. Origin of the present Delaware River striped bass population as shown by analysis of mitochondrial DNA. Trans Am Fish Soc, 123, 15–21.

    Article  Google Scholar 

  • Wayne, R K, George, S B, Gilbert, D, Collins, P W, Kovach, S D, Girman, D, and Lehman, N. 1991. A morphologic and genetic study of the island fox, Urcoyon littoralis. Evolution, 45, 1849–1868.

    Article  PubMed  Google Scholar 

  • Welsh, J, and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res, 18, 7213–7218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, C L, Goldson, S L, Baird, D B, and Bullock, D W. 1994. Geographical origin of an introduced insect pest, Listronotus bonariensis (Kuschel), determined by RAPD analysis. Heredity, 72, 412–419.

    Article  PubMed  Google Scholar 

  • Williams, J G K, Kubelik, A R, Livak, K J, Rafalski, J A, and Tingey, S V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res, 18, 6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, A C, Cann, R L, Carr, S M, George, M, Gyllensten, U B, Helm-Bychowski, K M. et al. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc, 26, 375–400.

    Article  Google Scholar 

Download references

Author information

Author notes
  1. C Lenney Williams

    Present address: AgResearch, PO Box 60, Lincoln, New Zealand

Authors and Affiliations

  1. Centre for Molecular Biology, PO Box 84, Lincoln University, Canterbury, New Zealand

    C Lenney Williams & D W Bullock

  2. AgResearch, PO Box 60, Lincoln, New Zealand

    S L Goldson

Authors
  1. C Lenney Williams
    View author publications

    Search author on:PubMed Google Scholar

  2. S L Goldson
    View author publications

    Search author on:PubMed Google Scholar

  3. D W Bullock
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, C., Goldson, S. & Bullock, D. Unusual mitochondrial genome in introduced and native populations of Listronotus bonariensis (Kuschel). Heredity 77, 565–571 (1996). https://doi.org/10.1038/hdy.1996.183

Download citation

  • Received: 23 January 1996

  • Issue date: 01 December 1996

  • DOI: https://doi.org/10.1038/hdy.1996.183

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • genetic variation
  • introduced species
  • Listronotus bonariensis
  • mitochondrial genome
  • RFLP
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited