Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Local genetic structure within two rookeries of Chelonia mydas (the green turtle)
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1996

Local genetic structure within two rookeries of Chelonia mydas (the green turtle)

  • Tigerin Peare1 &
  • Patricia G Parker1 

Heredity volume 77, pages 619–628 (1996)Cite this article

  • 1328 Accesses

  • 45 Citations

  • 6 Altmetric

  • Metrics details

Abstract

We used multilocus minisatellite DNA fingerprinting to examine the local genetic structure within nesting populations of green turtles (Chelonia mydas) in Tortuguero, Costa Rica and Melbourne, Florida, USA. In the Tortuguero population, there was a significant negative correlation between genetic similarity of pairs of nesting females and the distance between their nest sites both within years (r2=0.273; P<0.001) and between years (r2=0.578; P<0.001). Of the 122 female pairs scored for Tortuguero, 12.3 per cent had genetic similarity values resembling those of mother-offspring pairs. In the Melbourne population, however, no relationship between genetic similarity and distance was found (r2=0.017; P=0.075). The distance-related genetic structure of the Tortuguero population indicates that these females exhibit low levels of dispersal from natal sites, and that nestmates return independently to nest near their natal sites. The lack of a similar structure in the Melbourne population suggests that females from this population may not return to natal sites with comparable precision. High levels of mortality among nests, hatchlings or maturing turtles produced in the Melbourne rookery may also be responsible for the absence of distance-related local genetic structure.

Similar content being viewed by others

The architecture of assisted colonisation in sea turtles: building new populations in a biodiversity crisis

Article Open access 24 March 2022

High genetic diversity yet weak population genetic structure in European common terns

Article Open access 25 November 2024

New colonisers drive the increase of the emerging loggerhead turtle nesting in Western Mediterranean

Article Open access 17 January 2024

Article PDF

References

  • Allard, M W, Miyamoto, M M, Bjorndal, K A, Bolten, A B, and Bowen, B W. 1994. Support for natal homing in green turtles from mitochondrial DNA sequences. Copeia, 1994, 34–41.

    Article  Google Scholar 

  • Antlfinger, A E. 1981. The genetic basis of microdifferentiation in natural and experimental populations of Borrichia frutescens in relation to salinity. Evolution, 35, 1056–1069.

    Article  PubMed  Google Scholar 

  • Antonovics, J, and Bradshaw, A D. 1970. Evolution in closely adjacent plant populations. VIII. Clinal patterns at a mine boundary. Heredity, 25, 349–362.

    Article  Google Scholar 

  • Barrowclough, G F, and Coats, S L. 1985. The demography and population genetics of owls, with special reference to the conservation of the spotted owl (Strix occidentalis). In: Gutierrez, R. J and Carey, A. B. (eds) Ecology and Management of the Spotted Owl in the Pacific Northwest, pp. 74–85. US Forest Service, Portland, OR.

    Google Scholar 

  • Bishop, J A. 1981. A neo-Darwinian approach to resistance: examples from mammals. In: Bishop, J. A and Cook, L. M. (eds) Genetic Consequences of Man-Made Change, pp. 37–51. Academic Press, London.

    Google Scholar 

  • Bishop, J A, and Hartley, D J. 1976. The size and age structure of rural populations of Rattus norvegicus containing individuals resistant to the anticoagulant poison warfarin. J Anim Ecol, 45, 623–646.

    Article  Google Scholar 

  • Bishop, J A, Hartley, D J, and Partridge, G G. 1977. The population dynamics of genetically determined resistance to warfarin in Rattus norvegicus from mid Wales. Heredity, 39, 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Bjorndal, K. 1982. The consequences of herb ivory for the life history pattern of the Caribbean green turtle, Chelonia mydas. In: Bjorndal, K. (ed.) Biology and Conservation of Sea Turtles, pp. 19–26. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Bowen, B W, Meylan, A B, Ross, J P, Limpus, C J, Balazs, G H, and Avise, J C. 1992. Global population structure and natural history of the green turtle (Chelonia mydas) in terms of matriarchal phylogeny. Evolution, 46, 865–881.

    PubMed  Google Scholar 

  • Burke, T, and Bruford, M W. 1987. DNA fingerprinting in birds. Nature, 327, 149–152.

    Article  CAS  PubMed  Google Scholar 

  • Carr, A. 1967. So Excellente a Fishe. Natural History Press, New York.

    Google Scholar 

  • Carr, A. 1980. Some problems of sea turtle ecology. Am Zool, 20, 489–498.

    Article  Google Scholar 

  • Carr, A. 1982. Notes on the behavioral ecology of sea turtles. In: Bjorndal, K. (ed.) Biology and Conservation of Sea Turtles, pp. 19–26. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Carr, A, and Carr, M H. 1972. Site fixity in the Caribbean green turtle. Ecology, 53, 425–429.

    Article  Google Scholar 

  • Carr, A, and Hirth, H. 1962. The ecology and migrations of sea turtles, V: Comparative features of isolated green turtle colonies. Am Mus Novit, 2091, 1–42.

    Google Scholar 

  • Carr, A, and Ogren, L. 1960. The ecology and migrations of sea turtles IV: The green turtle in the Caribbean Sea. Bull Am Mus Nat Hist, 121, 1–48.

    Google Scholar 

  • Carr, A, Carr, M H, and Meylan, A B. 1978. The ecology and migrations of sea turtles. 7. The west Caribbean green turtle colony. Bull Am Mus Nat Hist, 162, 1–46.

    Google Scholar 

  • Chapman, R W. 1989. Spatial and temporal variation of mitochondrial DNA haplotype frequencies in the striped bass (Morone saxatilis) 1982 year class. Copeia, 1989, 344–348.

    Article  Google Scholar 

  • Decker, M D, Parker, P G, Minchella, D J, and Rabenold, K N. 1993. Monogamy in black vultures: genetic evidence from DNA fingerprinting. Behav Ecol, 4, 29–35.

    Article  Google Scholar 

  • Ehrlich, P R, and Raven, P H. 1969. Differentiation of populations. Science, 165, 1227–1232.

    Article  Google Scholar 

  • Frazer, N B, and Ladner, R C. 1986. A growth curve for green turtles (Chelonia mydas) in the U.S. Virgin Islands. Copeia, 1986, 798–802.

    Article  Google Scholar 

  • Georges, M, Lequarre, A-S, Castelli, M, Hanset, R, and Vassart, G. 1988. DNA fingerprinting in domestic animals using four different minisatellite probes. Cytogenet Cell Genet, 47, 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, D A, Lehman, N, O'Brien, S J, and Wayne, R K. 1990. Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature, 344, 764–766.

    Article  CAS  PubMed  Google Scholar 

  • Jain, S K, and Bradshaw, A D. 1966. Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity, 20, 407–441.

    Article  Google Scholar 

  • Jeffreys, A J, Wilson, V, and Thein, S L. 1985. Hypervariable “minisatellite” regions in human DNA. Nature, 314, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S. 1994. Reproductive Ecology of the Florida Green Turtle (Chelonia mydas). M.Sc. Thesis, University of Florida.

  • Koch, A L, Carr, A F, and Ehrenfeld, D W. 1969. The problem of open-sea navigation: the migration of the green sea turtle to Ascension Island. J Theor Biol, 22, 163–179.

    Article  CAS  PubMed  Google Scholar 

  • Lohmann, K J. 1992. How sea turtles navigate. Sci Am, 266, 100–106.

    Article  Google Scholar 

  • Longmire, J L, Lewis, A W, Brown, N C, Buckingham, J M, Clark, L M, Jones, M D. et al. 1988. Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics, 2, 14–24.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M. 1990. The similarity index and DNA fingerprinting. Mol Biol Evol, 7, 478–484.

    CAS  PubMed  Google Scholar 

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res, 27, 209–220.

    CAS  PubMed  Google Scholar 

  • Meylan, A B, Bowen, B W, and Avise, J C. 1990. A genetic test of the natal homing versus social facilitation models for green turtle migration. Science, 248, 724–727.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer, J A. 1982. Factors affecting beach selection by nesting sea turtles. In: Bjorndal, K. (ed.) Biology and Conservation of Sea Turtles, pp. 45–51. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Mortimer, J A, and Portier, K M. 1989. Reproductive homing and internesting behavior of the green turtle (Chelonia mydas) at Ascension Island, South Atlantic Ocean. Copeia, 1989, 962–977.

    Article  Google Scholar 

  • Parker, P G, and Whiteman, H. 1993. Genetic diversity in fragmented populations of Clemmys guttata and Chrysemys picta marginata as shown by DNA fingerprinting. Copeia, 1993, 841–846.

    Article  Google Scholar 

  • Piper, W H, and Parker Rabenold, P. 1992. Use Of fragment-sharing estimates from DNA fingerprinting to determine relatedness in a tropical wren. Mol Ecol, 1, 69–78.

    Article  CAS  Google Scholar 

  • Rabenold, P P, Rabenold, K N, Piper, W H, Haydock, J H, and Zack, S W. 1990. Shared paternity revealed by genetic analysis in cooperatively breeding tropical wrens. Nature, 348, 538–540.

    Article  CAS  Google Scholar 

  • Rohlf, F J. 1990. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Version 1.60. Applied Biostatistics, Setauket, New York.

    Google Scholar 

  • Rohlf, F J, and Schnell, G D. 1971. An investigation of the isolation-by-distance model. Am Nat, 105, 245–324.

    Article  Google Scholar 

  • Schnell, G D, Watt, D J, and Douglas, M E. 1985. Statistical comparison of proximity matrices: applications in animal behaviour. Anim Behav, 33, 239–253.

    Article  Google Scholar 

  • Selander, R K. 1970. Behavior and genetic variation in natural populations. Am Zool, 10, 53–66.

    Article  CAS  PubMed  Google Scholar 

  • Snaydon, R W, and Davies, M S. 1972. Rapid population differentiation in a mosaic environment. II. Morphological variation in Anthoxanthum odoratum. Evolution, 26, 390–405.

    Article  CAS  PubMed  Google Scholar 

  • Sokal, R R, and Wartenberg, D E. 1983. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics, 105, 219–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Southern, E M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol, 98, 503–517.

    Article  CAS  PubMed  Google Scholar 

  • Triggs, S J, Williams, M J, Marshall, S J, and Chambers, G K. 1992. Genetic structure of blue duck (Hymenolaimus malcorhynchos) populations revealed by DNA fingerprinting. Auk, 109, 80–89.

    Article  Google Scholar 

  • Weider, L J. 1985. Spatial and temporal genetic heterogeneity in a natural Daphnia population. J Plankton Res, 7, 101–123.

    Article  Google Scholar 

  • White, M M, and Svendsen, G E. 1992. Spatial-genetic structure in the easten chipmunk, Tamias striatus. J Mammal, 73, 619–624.

    Article  Google Scholar 

  • Witherington, B E. 1992. Behavioral responses of nesting sea turtles to artificial lighting. Herpetologica, 48, 31–39.

    Google Scholar 

  • Worth, D F, and Smith, J B. 1976. Marine turtle nesting on Hutchinson Island, Florida, in 1973. Florida Mar Res Publ, 18, 1–17.

    Google Scholar 

  • Wright, S. 1943a. Isolation by distance. Genetics, 28, 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1943b. An analysis of local variability of flower color in Linanthus parryae. Genetics, 28, 139–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann Eugen, 15, 323–354.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Zoology, Ohio State University, Columbus, 43210, OH, USA

    Tigerin Peare & Patricia G Parker

Authors
  1. Tigerin Peare
    View author publications

    Search author on:PubMed Google Scholar

  2. Patricia G Parker
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peare, T., Parker, P. Local genetic structure within two rookeries of Chelonia mydas (the green turtle). Heredity 77, 619–628 (1996). https://doi.org/10.1038/hdy.1996.189

Download citation

  • Received: 26 February 1996

  • Issue date: 01 December 1996

  • DOI: https://doi.org/10.1038/hdy.1996.189

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chelonia mydas
  • DNA fingerprinting
  • genetic structure
  • philopatry

This article is cited by

  • Mitochondrial microsatellite sequences improve the resolution of genetic structure in western Greater Caribbean green turtle nesting populations

    • Brian M. Shamblin
    • Alan B. Bolten
    • Karen A. Bjorndal

    Marine Biology (2023)

  • Laying on the edge: demography of green sea turtles (Chelonia mydas) nesting on Playa Norte, Tortuguero, Costa Rica

    • Antonio Velez-Espino
    • Helen Pheasey
    • Luis M. Fernández

    Marine Biology (2018)

  • Polyandry and multiple paternities in the threatened Agassiz’s desert tortoise, Gopherus agassizii

    • Christina M. Davy
    • Taylor Edwards
    • Robert W. Murphy

    Conservation Genetics (2011)

  • Mitochondrial DNA diversity and phylogeography of endangered green turtle (Chelonia mydas) populations in Africa

    • A. Formia
    • B.J. Godley
    • M.W. Bruford

    Conservation Genetics (2006)

  • Population structure and genetic diversity in green turtles nesting at Tortuguero, Costa Rica, based on mitochondrial DNA control region sequences

    • Karen A. Bjorndal
    • Alan B. Bolten
    • Sebastian Troëng

    Marine Biology (2005)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited