Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1997

Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation

  • Susan P Hitchings1 &
  • Trevor J C Beebee1 

Heredity volume 79, pages 117–127 (1997)Cite this article

  • 4465 Accesses

  • 223 Citations

  • 3 Altmetric

  • Metrics details

Abstract

The ability to maintain small populations in quasi-natural settings is an issue of considerable importance in biodiversity conservation. The genetic structure of urban common frog (Rana temporaria) populations was determined by allozyme electrophoresis and used to evaluate the effects of restricted intersite migration. Despite the lack of any absolute barrier to movement between ponds, substantial genetic differentiation was found between sites separated by an average of only 2.3 km. Genetic distances between these town ponds correlated positively with geographical distances and were almost twice as great as those found between rural sites separated by an average of 41 km. Measures of genetic diversity and fitness were always lowest in the town, where the degree of subpopulation differentiation (FST = 0.388) was high. Population decline was not evident in the town, but molecular and fitness data indicated the presence of genetic drift and inbreeding depression. The long-term survival of artificially restricted populations, particularly of relatively sedentary species, may require molecular monitoring, if genetic diversity is not to be lost by chance when facets of the species niche prove to be poorly understood.

Similar content being viewed by others

High genetic diversity yet weak population genetic structure in European common terns

Article Open access 25 November 2024

Genetic diversity and population structure analysis of Lateolabrax maculatus from Chinese coastal waters using polymorphic microsatellite markers

Article Open access 27 July 2021

Genetic footprints of a rapid and large-scale range expansion: the case of cyclic common vole in Spain

Article 25 March 2023

Article PDF

References

  • Alcobendas, M, Dopazo, H, and Alberch, P. 1996. Geographic variation in allozymes of populations of Salamandra salamandra (Amphibia: Urodela) exhibiting distinct reproductive modes. J Evol Biol, 9, 83–102.

    Article  Google Scholar 

  • Arnold, H R. 1995. Atlas of Amphibians and Reptiles in Britain. ITE research publication 10. HMSO London.

    Google Scholar 

  • Banks, B, and Elliott, M. 1990. Amphibians in Sussex—a Site Inventory. Sussex Amphibian and Reptile Group. Unpublished report.

  • Barr, C J, Bunce, R G H, Clarke, R T, Fuller, R M, Furse, M T, and Gillespie, M K, et al. 1993. Countryside Survey 1990 Main Report. Department of the Environment, London.

    Google Scholar 

  • Beebee, T J C. 1979. Habitats of the British amphibians (2): suburban parks and gardens. Biol Conserv, 15, 241–257.

    Article  Google Scholar 

  • Cavalli-Sforza, L L, and Edwards, A W F. 1967. Phylogenetic analysis: models and estimation procedures. Evolution, 21, 550–570.

    Article  CAS  PubMed  Google Scholar 

  • Cooke, A S. 1972. Indications of recent changes in the British Isles of the frog (Rana temporarid) and the toad (Bufo bufo). J Zool Lond, 167, 161–178.

    Article  Google Scholar 

  • Cooke, A S. 1975a. Spawn site selection and colony size of the frog (Rana temporaria) and the toad (Bufo bufo). J Zool Lond. 175, 29–38.

    Article  Google Scholar 

  • Cooke, A S. 1975b. Spawn clumps of the common frog Rana temporaria: number of ova and hatchability. Br J Herpetol, 5, 505–509.

    Google Scholar 

  • Cooke, A S, and Oldham, R S. 1995. Establishment of populations of the common frog, Rana temporaria, and common toad, Bufo bufo, in a newly created reserve following translocation. Herpetol J, 5, 173–180.

    Google Scholar 

  • Cunningham, A A, Langton, T E S, Bennett, P M, Drury, S E N, Gough, R E, and Kirkwood, J K. 1993. Unusual mortality associated with poxvirus-like particles in frogs (Rana temporaria). Vet Record, 133, 141–142.

    Article  CAS  PubMed  Google Scholar 

  • Demeny, P. 1990. Population. In: Turner, B. L., Clark, W. C, Kates, R. W., Richards, J. F., Mathews, J. T. and Meyer, W. B. (eds) The Earth as Transformed by Human Action, pp. 41–54. Cambridge University Press, Cambridge.

    Google Scholar 

  • Diamond, J M. 1989. The present, past and future of human-caused extinctions. Phil Trans R Soc B, 325, 469–477.

    Article  CAS  PubMed  Google Scholar 

  • EEC. 1992. Council Directive 92/43/EEC of 21 May 1992 on the Conseivation of Natural Habitats and of Wild Fauna and Flora. European Commission, Brussels.

  • Ehrlich, P R, and Wilson, E O. 1991. Biodiversity studies: science and policy. Science, 253, 758–762.

    Article  CAS  PubMed  Google Scholar 

  • Fahrig, L, Pedlar, J H, Pope, S E, Taylor, P D, and Wegner, J F. 1995. Effect of road traffic on amphibian density. Biol Conserv, 73, 177–182.

    Article  Google Scholar 

  • Falconer, D S. 1989. Introduction to Quantitative Genetics, 3rd edn. Longman, Essex.

    Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (Phytogeny Inference Package) version 3.5c distributed by the author. Department of Genetics, University of Washington, Seattle.

  • Glandt, D. 1986. Die saisonalen Wanderungen der mitteleuropäischer amphibien. Bonn zool Beitr, 37, 211–228.

    Google Scholar 

  • Gosner, K L. 1960. A simplified table for Staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190.

    Google Scholar 

  • Goudet, J. 1995. FSTAT v-1.2: a computer program to calculate F-statistics. J Hered, 86, 485–486.

    Article  Google Scholar 

  • Guttman, S I. 1985. Biochemical studies of anuran evolution. Copeia, 2, 292–309.

    Article  Google Scholar 

  • Haapanen, A. 1974. Site tenacity of the common frog (Rana temporaria L.) and the moor frog (R. arvalis Nilss.). Ann Zoo Fenn, 7, 61–66.

    Google Scholar 

  • Hanski, I. 1991. Single-species metapopulation dynamics: concepts, models and observations. In: Gilpin, M. and Hanski, I. (eds) Metapopulation Dynamics: Empirical and Theoretical Investigations, pp. 17–38. The Linnean Society of London/Academic Press, London.

    Chapter  Google Scholar 

  • Hanski, I, and Gilpin, M. 1991. Metapopulation dynamics: brief history and conceptual domain. In: Gilpin, M. and Hanski, I. (eds) Metapopulation Dynamics: Empirical and Theoretical Investigations, pp. 3–16. The Linnean Society of London/Academic Press, London.

    Chapter  Google Scholar 

  • Hanksi, L, Pöyry, J, Pakkala, T, and Kuussaari, M. 1995. Multiple equilibria in metapopulation dynamics. Nature, 377, 618–621.

    Article  Google Scholar 

  • Hartl, D L, and Clark, A G. 1989. Principles of Population Genetics. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hutchings, M J, Booth, K D, and Waite, S. 1991. Comparison of survivorship by the logrank test: criticisms and alternatives. Ecology, 72, 2290–2293.

    Article  Google Scholar 

  • Kates, R W, Turner, B L, and Clark, W C. 1990. The great transformation. In: Turner, B. L., Clark, W. C, Kates, R. W., Richards, J. F., Mathews, J. T. and Meyer, W. B. (eds) The Earth as Transformed by Human Action, pp. 1–17. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kawamura, T, Nishioka, M, Sumida, M, and Ryuzaki, M. 1990. An electrophoretic study of genetic differentiation in 40 populations of Bufo japonicus distributed in Japan. Sci Report Lab Amphib Biol, Hiroshima Univ, 10, 1–51.

    Google Scholar 

  • Kruess, A, and Tscharntke, T. 1994. Habitat fragmentation, species loss, and biological control. Science, 264, 1581–1584.

    Article  CAS  PubMed  Google Scholar 

  • Larson, A, Wake, D B, and Yanev, K P. 1984. Measuring gene flow among populations having high levels of genetic fragmentation. Genetics, 106, 293–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenmayer, D B, and Nix, H A. 1992. Ecological principles for the design of wildlife corridors. Conserv Biol, 7, 627–630.

    Article  Google Scholar 

  • Mann, C C, and Plummer, M L. 1995. Are wildlife corridors the right path? Science, 270, 1428–1430.

    Article  CAS  Google Scholar 

  • Martin, C M. 1994. Recovering endangered species and restoring ecosystems: conservation planning for. the twenty-first century in the United States. Ibis, 137, s198–s203.

    Article  Google Scholar 

  • May, B. 1992. Starch gel electrophoresis of allozymes. In: Hoelzel, A. R. (ed.) Molecular Genetic Analysis of Populations, pp. 1–27 and 271–280. IRL Press, Oxford.

    Google Scholar 

  • May, R M, Lawton, J H, and Stork, N E. 1995. Assessing extinction rates. In: Lawton, J. H. and May, R. M. (eds) Extinction Rates, pp. 1–24. Oxford University Press, Oxford.

    Google Scholar 

  • Mitton, J B, and Grant, M C. 1984. Associations among protein heterozygosity, growth rate and developmental homeostasis. Ann Rev Ecol Syst, 15, 479–499.

    Article  Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nishioka, M, Sumida, M, Ueda, H, and Wu, Z. 1990. Genetic relationships among 13 Bufo species and subspecies by the method of electrophoretic analyses. Sci Report Lab Amphib Biol, Hiroshima Univ, 10, 53–91.

    Google Scholar 

  • Nishioka, M, Sumida, M, Borkin, L J, and Wu, Z. 1992. Genetic differentiation of 30 populations of 12 brown frog species distributed in the Palearctic region elucidated by the electrophoretic method. Sci Report Lab Amphib Biol, Hiroshima Univ, 11, 109–160.

    Google Scholar 

  • Noltmann, E A. 1972. Aldose-ketose isomerases. In: Boyer, P. D. (ed.) Enzymes, 3rd edn, 6, pp. 271–254. Academic Press, New York.

    Google Scholar 

  • Peto, R, and Pike, M C. 1973. Conservatism of the approximation Σ(0–E)2/E in the logrank test for survival data or tumor incidence data. Biometrics, 29, 579–584.

    Article  CAS  PubMed  Google Scholar 

  • Ragghianti, M, and Wake, D M. 1986. Genetic variation and its evolutionary implications in the Italian newt, Triturus italicus. Herpetologica, 42, 206–214.

    Google Scholar 

  • Raymond, M, and Rousset, F. 1995. GENEPOP (version 1.2): a population genetics software for exact tests and ecumenicism. J Hered 86, 248–249.

    Article  Google Scholar 

  • Reh, W, and Seitz, A. 1990. The influence of land use on the genetic structure of populations of the common hograna temporaria. Biol Conserv, 54, 239–249.

    Article  Google Scholar 

  • Richardson, B J, Baverstock, P R, and Adams, M. 1986. Allozyme Electrophoresis A Handbook for Animal Systematics and Population Studies. Academic Press, San Diego, CA.

    Google Scholar 

  • Samuels, M. 1989. Statistics for the Life Sciences. Dellen, San Francisco.

    Google Scholar 

  • Skole, D L, Chomentowski, W H, Salas, W A, and Nobre, A D. 1994. Physical and human dimensions of deforestation in Amazonia. BioScience, 44, 314–321.

    Article  Google Scholar 

  • Slatkin, M. 1985. Rare alleles of indicators of gene flow. Evolution, 39, 53–65.

    Article  PubMed  Google Scholar 

  • Smith, M. 1973. The British Amphibians and Reptiles. Collins, London.

    Google Scholar 

  • Swofford, D L, and Selander, R B. 1981. BIOSYS-1 a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72, 281–283.

    Article  Google Scholar 

  • Templeton, A R, Shaw, K, Routman, E, and Davis, S K. 1990. The genetic consequences of habitat fragmentation. Ann Mo Bot Gard, 77, 13–27.

    Article  Google Scholar 

  • Thornton, D, and Kite, D J. 1990. Changes in the Extent of the Thames Estuary Grazing Marshes. Nature Conservancy Council, Peterborough.

    Google Scholar 

  • Tilman, D, May, R M, Lehman, C L, and Nowak, M A. 1994. Habitat destruction and the extinction debt. Nature 371, 65–66.

    Article  Google Scholar 

  • Webb, E C. 1984. Enzyme Nomenclature 1984. International Union of Biochemistry. Academic Press, London.

    Google Scholar 

  • Wright, S. 1987. Evolution and the Genetics of Populations, 4, Variability Within and Among Natural Populations. University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biochemistry, University of Sussex, Falmer, BN1 9QG, Brighton, UK

    Susan P Hitchings & Trevor J C Beebee

Authors
  1. Susan P Hitchings
    View author publications

    Search author on:PubMed Google Scholar

  2. Trevor J C Beebee
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Trevor J C Beebee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitchings, S., Beebee, T. Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity 79, 117–127 (1997). https://doi.org/10.1038/hdy.1997.134

Download citation

  • Received: 09 May 1996

  • Issue date: 01 August 1997

  • DOI: https://doi.org/10.1038/hdy.1997.134

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozymes
  • biodiversity
  • conservation genetics
  • fitness
  • genetic drift
  • Rana temporaria

This article is cited by

  • Variation in functional connectivity between metapopulations in urbanized and forested areas in an endangered salamander

    • Jong Yoon Jeon
    • Daecheol Jeong
    • Mi-Sook Min

    Urban Ecosystems (2024)

  • Tadpoles Develop Elevated Heat Tolerance in Urban Heat Islands Regardless of Sex

    • Veronika Bókony
    • Emese Balogh
    • Attila Hettyey

    Evolutionary Biology (2024)

  • Land-use preferences of the European green toad (Bufotes viridis) in the city of Vienna (Austria): the importance of open land in urban environments

    • Lukas Landler
    • Stephan Burgstaller
    • Silke Schweiger

    Frontiers in Zoology (2023)

  • Urbanization and a green corridor do not impact genetic divergence in common milkweed (Asclepias syriaca L.)

    • Sophie T. Breitbart
    • Anurag A. Agrawal
    • Marc T. J. Johnson

    Scientific Reports (2023)

  • Urban environment determines population genetics in the green toad, Bufotes viridis

    • Viktória Vargová
    • Damiána Gužiová
    • Peter Kaňuch

    European Journal of Wildlife Research (2023)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited