Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Kinetic organization of metaphase I bivalents in spermatogenesis of Lepidoptera and Trichoptera species with small chromosome numbers
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1997

Kinetic organization of metaphase I bivalents in spermatogenesis of Lepidoptera and Trichoptera species with small chromosome numbers

  • Klaus Werner Wolf1,
  • Karel Novák2 &
  • František Marec2 

Heredity volume 79, pages 135–143 (1997)Cite this article

  • 1588 Accesses

  • 29 Citations

  • 3 Altmetric

  • Metrics details

Abstract

The fine structure of bivalents in metaphase I spermatocytes of two Lepidoptera species, Orgyia thyellina Butler (n = 11) and O. antiqua (L.) (n = 14) (Lymantriidae), and a Trichoptera species, Limnephilus decipiens (Kolenatý) (n = 10) (Limnephilidae) were studied using a series of ultrathin sections and transmission electron microscopy. The bulk of species in both orders possess a haploid chromosome number of about 30. Thus, the experimental species have relatively small chromosome numbers. This study showed that metaphase I bivalents in both Lepidoptera species are polykinetic; attachment of kinetochore microtubules is found scattered throughout the entire poleward chromosomal surface. The microtubules were inserted in material of medium electron density. A pair of distinct kinetochore plates, consisting of material of about the same electron density as the chromatin, was detected at each poleward chromosomal surface in metaphase I bivalents of the caddis-fly, L. decipiens. The observations suggest that DNA elements responsible for the organization of the kinetochores are dispersed throughout the chromosomes in the two Lepidoptera species, whereas they are narrowly clustered in the Trichoptera. Thus, karyotype evolution in the closely related Lepidoptera and the Trichoptera involved widely differing mechanisms.

Similar content being viewed by others

Nonlinear mechanics of human mitotic chromosomes

Article Open access 04 May 2022

Microtubule depolymerization at kinetochores restricts anaphase spindle elongation

Article 30 January 2026

Evolutionary patterns and functional effects of 3D chromatin structures in butterflies with extensive genome rearrangements

Article Open access 26 July 2024

Article PDF

References

  • Ault, J G, and Lyttle, T W. 1988. A transmissible dicentric chromosome in Drosophila melanogaster. Chromosoma 97, 71–79.

    Article  Google Scholar 

  • Choo, K H, Vissel, B, Nagy, A, Earle, E, and Kalitsis, P. 1991. A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucl Acids Res, 19, 1179–1182.

    Article  CAS  Google Scholar 

  • Cretschmar, M. 1928. Das Verhalten der Chromosome bei der Spermatogenese von Orgyia thyellina Btl. und antiqua L., sowie eines ihrer Bastarde. Z Zellforsch Mikrosk Anat, 7, 291–399.

    Article  Google Scholar 

  • Earnshaw, W C, and Migeon, B R. 1985. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296.

    Article  CAS  Google Scholar 

  • Friedländer, M. 1983. Phylogenetic branching of Trichoptera and Lepidoptera: An ultrastructural analysis on comparative spermatology. J Ultrastruct Res, 83, 141–147.

    Article  Google Scholar 

  • Gassner, G, and Klemetson, D J. 1974. A transmission electron microscope examination of Hemipteran and Lepidopteran gonial centromeres. Can J Genet Cytol, 16, 457–464.

    Article  Google Scholar 

  • Goodpasture, C. 1975. High-resolution chromosome analysis in Lepidoptera. Ann Entomol Soc Am, 69, 537–544.

    Google Scholar 

  • Hamon, C, and Chauvin, G. 1992. Ultrastructural analysis of spermatozoa of Korscheltellus lupulinus L. (Lepidoptera: Hepialidae) and Micropterix calthella L. (Lepidoptera: Micropterigidae). Int J Insect Morphol Embryol, 21, 149–160.

    Article  Google Scholar 

  • Holm, P B, and Rasmussen, S W. 1980. Chromosome pairing, recombination nodules and chiasma formation in diploid Bombyx males. Carlsberg Res Comm, 45, 483–548.

    Article  Google Scholar 

  • Kiauta, B. 1971. The chromosome condition in the spermatogenesis of the caddis-fly Goera pilosa (Fabricius, 1775) (Trichoptera, Integripalpia, Limnephiloidea: Goeridae) from the God dal Fuorn in the Swiss National Park, with considerations on the phylogenetic position of the family. Ergeb Wiss Untersuch Schweiz Natl-Park, 9, 174–185.

    Google Scholar 

  • Klingstedt, H. 1931. Digametie beim Weibchen der Trichoptere Limnophilus decipiens Kol. nebst Erörterungen zur Theorie der Geschlechtsvererbung. Acta Zool Fenn, 10, 1–64.

    Google Scholar 

  • Kobayashi, Y, and Ando, H. 1988. Phylogenese relationships among the lepidopteran and trichopteran suborders (Insecta) from the embryological standpoint. Z Zool Syst Evolut-forsch, 26, 186–210.

    Article  Google Scholar 

  • Kristensen, N P. 1991. Phylogeny of extant Hexapods. In: Naumann, I. D., Carne, P. B., Lawrence, J. F., Nielsen, E. S., Spradbery, J. P., Taylor, R. W. et al. (eds) The Insects of Australia, 2nd edn, 1, pp. 125–140. Melbourne University Press, Carlton, Victoria, Australia.

    Google Scholar 

  • Lankhorst, L. 1970. A note on the periodicity of cell divisions in the gonads of Trichoptera, with a review of the main cytotaxonomic data on the caddis-fly species so far studied. Genen Phaenen, 14, 9–14.

    Google Scholar 

  • Le Lannic, J. 1975. Contribution à l'étude du développment et de la maturation de l'appareil reproducteur de Limnephilus rhombicus L. Bull Soc Zool Fr, 100, 539–550.

    Google Scholar 

  • Lockwood, A P M. 1961. ‘Ringer’ solutions and some notes on the physiological basis of their ionic composition. Comp Biochem Physiol, 2, 241–289.

    Article  CAS  Google Scholar 

  • Meves, F. 1903. über oligopyrene und apyrene Spermien und über ihre Entstehung nach Beobachtungen an Paludina und Pygaera. Arch Mikrosk Anat Entwicklungsgesch, 61, 1–84.

    Google Scholar 

  • Neboiss, A. 1991. Trichoptera. (Caddis-flies, caddises). In: Naumann, I. D., Carne, P. B., Lawrence, J. F., Nielsen, E. S-, Spradbery, J. P., Taylor, R. W. et al. (eds) The Insects of Australia, 2nd edn, 2, pp. 787–816. Melbourne University Press, Carlton, Victoria, Australia.

    Google Scholar 

  • Nielsen, E S, and Common, I F B. 1991. Lepidoptera (moths and butterflies). In: Naumann, I. D., Carne, P. B., Lawrence, J. F., Nielsen, E. S., Spradbery, J. P., Taylor, R. W. et al. (eds) The Insects of Australia, 2nd edn, 2, pp. 817–915. Melbourne University Press, Carlton, Victoria, Australia.

    Google Scholar 

  • Novák, K, and Sehnal, F. 1963. The development cycle of some species of the genus Limnephilus (Trichoptera). Acta Soc Entomol Čechoslov, 60, 68–80.

    Google Scholar 

  • Rieder, C L. 1982. The formation, structure and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol, 79, 1–58.

    Article  CAS  Google Scholar 

  • Robinson, R. 1971. Lepidoptera Genetics. Pergamon Press, Oxford.

    Book  Google Scholar 

  • Sonnenschein, M, and Häuser, C L. 1990. Presence of only eupyrene spermatozoa in adult males of the genus Micropterix Hübner and its phylogenetic significance (Lepidoptera: Zeugloptera, Micropterigidae). Int I Insect Morphol Embryol, 19, 269–276.

    Article  Google Scholar 

  • Suomalainen, M. 1966. Achiasmatische Oogonese bei Trichopteren. Chromosoma, 18, 201–207.

    Article  Google Scholar 

  • Suomalainen, E. 1969. Chromosome evolution in the Lepidoptera. Chromosomes Today, 2, 132–138.

    Google Scholar 

  • Traut, W. 1976. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma, 58, 275–284.

    Article  CAS  Google Scholar 

  • Traut, W, and Mosbacher, G C. 1968. Geschlechtschromatin bei Lepidopteren. Chromosoma, 25, 343–356.

    Article  CAS  Google Scholar 

  • Wandall, A. 1994. A stable dicentric chromosome: Both centromeres develop kinetochores and attach to the spindle in monocentric and dicentric configuration. Chromosoma, 103, 56–62.

    Article  CAS  Google Scholar 

  • White, M J D. 1973. Animal Cytology and Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wolf, K W. 1990. Sheathed nuclear division in primary spermatocytes of Orgyia antiqua (Lepidoptera, Insecta). BioSystems, 24, 5–15.

    Article  CAS  Google Scholar 

  • Wolf, K W. 1994. The unique structure of Lepidopteran spindles. Int Rev Cytol, 152, 1–48.

    Article  Google Scholar 

  • Wolf, K W. 1995. Spindle membranes and spindle architecture in invertebrates. Micron, 26, 69–98.

    Article  Google Scholar 

  • Wolf, K W. 1996. The structure of condensed chromosomes in mitosis and meiosis of insects. Int J Insect Morphol Embryol, 25, 37–62.

    Article  Google Scholar 

  • Wolf, K W, and Traut, W. 1991. Cytology of Lepidoptera. VII. The restructuring of eupyrene prophase I spermatocytes and its relationship to meiotic chromosome and spindle organization in Ephestia kuehniella Z. Protoplasma 165, 51–63.

    Article  Google Scholar 

  • Wolf, K W, Baumgart, K, and Traut, W. 1987. Cytology of Lepidoptera. II. Fine structure of eupyrene and apyrene primary spermatocytes in Orgyia thyellina. Eur J Cell Biol, 44, 51–61.

    Google Scholar 

  • Wolf, K W, Novák, K, and Marec, F. 1992. Chromosome structure in spermatogenesis of Anabolia furcata (Trichoptera). Genome, 35, 46–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut für Anatomie der Medizinischen Universität, Ratzeburger Allee 160, Lübeck, D-23538, Germany

    Klaus Werner Wolf

  2. Institute of Entomology, Czech Academy of Sciences, Branišovská 31, České Budějovice, CZ-37005, Czech Republic

    Karel Novák & František Marec

Authors
  1. Klaus Werner Wolf
    View author publications

    Search author on:PubMed Google Scholar

  2. Karel Novák
    View author publications

    Search author on:PubMed Google Scholar

  3. František Marec
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to František Marec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, K., Novák, K. & Marec, F. Kinetic organization of metaphase I bivalents in spermatogenesis of Lepidoptera and Trichoptera species with small chromosome numbers. Heredity 79, 135–143 (1997). https://doi.org/10.1038/hdy.1997.136

Download citation

  • Received: 26 June 1996

  • Issue date: 01 August 1997

  • DOI: https://doi.org/10.1038/hdy.1997.136

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • karyotype evolution
  • kinetochores
  • meiosis
  • microtubules

This article is cited by

  • Observation of morphological abnormalities in silkworm pupae after feeding 137CsCl-supplemented diet to evaluate the effects of low dose-rate exposure

    • Sota Tanaka
    • Tadatoshi Kinouchi
    • Sentaro Takahashi

    Scientific Reports (2020)

  • Evolutionary mechanisms of runaway chromosome number change in Agrodiaetus butterflies

    • Alisa O. Vershinina
    • Vladimir A. Lukhtanov

    Scientific Reports (2017)

  • Effects of X-rays on Tuta absoluta for use in inherited sterility programmes

    • Cynthia L. Cagnotti
    • Mariana M. Viscarret
    • Silvia N. López

    Journal of Pest Science (2012)

  • Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera)

    • Petr Nguyen
    • Ken Sahara
    • František Marec

    Genetica (2010)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited