Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. review
  4. article
Sympathetic Overdrive and Cardiovascular Risk in the Metabolic Syndrome
Download PDF
Download PDF
  • Review
  • Published: 01 November 2006

Sympathetic Overdrive and Cardiovascular Risk in the Metabolic Syndrome

  • Guido Grassi1,2,3 

Hypertension Research volume 29, pages 839–847 (2006)Cite this article

  • 7302 Accesses

  • Metrics details

Abstract

Sympathetic neural factors are involved in energy balance as well as in blood pressure control. This represents the background for the hypothesis that an adrenergic overdrive may be implicated in the development and/or progression of the metabolic syndrome. Indirect and direct markers of sympathetic drive have confirmed this hypothesis, by showing the occurrence of an adrenergic activation both at the cardiac and peripheral vascular level. It is likely that this sympathetic dysfunction is triggered by reflex mechanisms (arterial baroreceptor impairment), metabolic factors (insulin resistance), and humoral agents (angiotensin II, leptin). The adrenergic overdrive exerts a number of adverse effects on the cardiovascular system, by favoring the genesis of cardiac hypertrophy, vascular hypertrophy, arterial remodeling and endothelial dysfunction and thereby aggravating the already elevated cardiovascular risk profile of the patient. This carries obvious clinical and therapeutic implications, including the suggestion that sympathetic inhibition should be included among the goals of both pharmacological and non-pharmacological interventions employed in the treatment of the metabolic syndrome.

Similar content being viewed by others

Multi-organ denervation: a novel approach to combat cardiometabolic disease

Article Open access 24 April 2023

Effects of acute carotid baroreceptor stimulation on sympathetic nerve traffic in resistant and uncontrolled hypertension: a systematic review and meta-analysis

Article 17 May 2024

Emerging topics on basic research in hypertension: interorgan communication and the need for interresearcher collaboration

Article 16 January 2023

Article PDF

References

  1. Reaven GM, Lithell H, Landsberg L : Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996; 334: 374–381.

    Article  CAS  PubMed  Google Scholar 

  2. Morrison SF : Central pathways controlling brown adipose tissue thermogenesis. News Physiol Sci 2004; 19: 67–74.

    PubMed  Google Scholar 

  3. Grassi G : Role of the sympathetic nervous system in human hypertension. J Hypertens 1998; 16: 1979–1987.

    Article  CAS  PubMed  Google Scholar 

  4. Grassi G, Mancia G : Neurogenic hypertension: is the enigma of its origin near the solution? Hypertension 2004; 43: 154–155.

    Article  CAS  PubMed  Google Scholar 

  5. Amerena J, Julius S : The role of the autonomic nervous system in hypertension. Hypertens Res 1995; 18: 99–110.

    Article  CAS  PubMed  Google Scholar 

  6. Julius S, Krause L, Schork NJ, et al: Hyperkinetic borderline hypertension in Tecumseh, Michigan. Hypertension 1991; 9: 77–84.

    Article  CAS  Google Scholar 

  7. Grassi G, Mancia G : The function of the autonomic nervous system in hypertension, in Bolis L, Licinio J, Govoni S ( eds): Handbook of the Autonomic Nervous System. New York, Marcel Dekker, 2003, pp 425–438.

    Google Scholar 

  8. Grassi G, Vailati S, Bertinieri G, et al: Heart rate as marker of sympathetic activity. J Hypertens 1998; 16: 1635–1639.

    Article  CAS  PubMed  Google Scholar 

  9. Grassi G, Esler M : How to assess sympathetic activity in humans. J Hypertens 1999; 17: 719–734.

    Article  CAS  PubMed  Google Scholar 

  10. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G : Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 1998; 31: 68–72.

    Article  CAS  PubMed  Google Scholar 

  11. Grassi G, Seravalle G, Bertinieri G, et al: Sympathetic and reflex alterations in systo-diastolic and systolic hypertension of the elderly. J Hypertens 2000; 18: 587–593.

    Article  CAS  PubMed  Google Scholar 

  12. Greenwood JP, Scott EM, Stoker JB, Mary DA : Hypertensive left ventricular hypertrophy: relation to peripheral sympathetic drive. J Am Coll Cardiol 2001; 38: 1711–1717.

    Article  CAS  PubMed  Google Scholar 

  13. Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD : Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation 2003; 108: 560–565.

    Article  PubMed  Google Scholar 

  14. Esler M, Ferrier C, Lambert G, Eisenhofer G, Cox H, Jennings G : Biochemical evidence of sympathetic hyperactivity in human hypertension. Hypertension 1991; 17: S29–S35.

    Article  Google Scholar 

  15. Ferrier C, Esler MD, Eisenhofer G, et al: Increased norepinephrine spillover into the jugular veins in essential hypertension. Hypertension 1992; 19: 62–69.

    Article  CAS  PubMed  Google Scholar 

  16. Young JB, Macdonald IA : Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Int J Obes Relat Metab Disord 1992; 16: 959–967.

    CAS  PubMed  Google Scholar 

  17. Troisi RJ, Weiss ST, Parker DR, Sparrow D, Young JB, Landsberg L : Relation of obesity and diet to sympathetic nervous system activity. Hypertension 1991; 17: 669–677.

    Article  CAS  PubMed  Google Scholar 

  18. Grassi G, Seravalle G, Cattaneo BM, et al: Sympathetic activation in obese normotensive subjects. Hypertension 1995; 25: 560–563.

    Article  CAS  PubMed  Google Scholar 

  19. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M : Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation 1997; 96: 3423–3429.

    Article  CAS  PubMed  Google Scholar 

  20. Grassi G, Dell'Oro R, Facchini A, Quarti Trevano F, Bolla GB, Mancia G : Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens 2004; 22: 2363–2369.

    Article  CAS  PubMed  Google Scholar 

  21. Alvarez GE, Ballard TP, Beske SD, Davy KP : Subcutaneous obesity is not associated with sympathetic neural activation. Am J Physiol 2004; 287: H414–H418.

    CAS  Google Scholar 

  22. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK : Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation 1998; 98: 772–776.

    Article  CAS  PubMed  Google Scholar 

  23. Grassi G, Facchini A, Trevano FQ, et al: Obstructive sleep apnea–dependent and −independent adrenergic activation in obesity. Hypertension 2005; 46: 321–325.

    Article  CAS  PubMed  Google Scholar 

  24. Grassi G, Seravalle G, Dell'Oro R, Turri C, Bolla GB, Mancia G : Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension 2000; 36: 538–542.

    Article  CAS  PubMed  Google Scholar 

  25. Brunner EJ, Hemingway H, Walker BR, et al: Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study. Circulation 2002; 106: 2659–2665.

    Article  CAS  PubMed  Google Scholar 

  26. Straznicky NE, Lambert EA, Lambert GW, Masuo K, Esler MD, Nestel PJ : Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J Clin Endocrinol Metab 2005; 90: 5998–6005.

    Article  CAS  PubMed  Google Scholar 

  27. Huggett RJ, Burns J, Mackintosh AF, Mary DA : Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension 2004; 44: 847–852.

    Article  CAS  PubMed  Google Scholar 

  28. Grassi G, Dell'Oro R, Quarti-Trevano F, et al: Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 2005; 48: 1359–1365.

    Article  CAS  PubMed  Google Scholar 

  29. Arenare F, Quarti Trevano F, Dell'Oro R, et al: Metabolic syndrome potentiates the sympathetic and baroreflex dysfunction of heart failure state. J Hypertens 2006; 24: S6 ( Abstract).

    Article  CAS  Google Scholar 

  30. Grassi G, Giannattasio C, Cleroux J, et al: Cardiopulmonary reflex before and after regression of left ventricular hypertrophy in essential hypertension. Hypertension 1988; 12: 227–237.

    Article  CAS  PubMed  Google Scholar 

  31. Narkiewicz K, van de Borne PJ, Pesek CA, Dyken ME, Montano N, Somers VK : Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation 1999; 99: 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  32. Landsberg L : Obesity and the insulin resistance syndrome. Hypertens Res 1996; 19: S51–S55.

    Article  PubMed  Google Scholar 

  33. Egan BM : Insulin resistance and the sympathetic nervous system. Curr Hypertens Rep 2003; 5: 247–254.

    Article  PubMed  Google Scholar 

  34. Anderson EA, Balon TW, Hoffman RP, Sinkey CA, Mark AL : Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension 1992; 19: 621–627.

    Article  CAS  PubMed  Google Scholar 

  35. Scherrer U, Sartori C : Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 1997; 96: 4104–4113.

    Article  CAS  PubMed  Google Scholar 

  36. Grassi G, Seravalle G, Quarti Trevano F, et al: Potentiating effects of the metabolic syndrome on the sympathetic abnormalities characterizing human obesity. J Hypertens 2005; 23: S266 ( Abstract).

  37. Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brant DO : Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension 1993; 21: 618–623.

    Article  CAS  PubMed  Google Scholar 

  38. Li YF, Wang W, Mayhan WG, Patel KP : Angiotensin-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide. Am J Physiol Regul Integr Comp Physiol 2006; 290: R1035–R1043.

    Article  CAS  PubMed  Google Scholar 

  39. Taddei S, Grassi G : Angiotensin II as the link between nitric oxide and neuroadrenergic function. J Hypertens 2005; 23: 935–937.

    Article  CAS  PubMed  Google Scholar 

  40. Grassi G : Renin-angiotensin-sympathetic crosstalks in hypertension: reappraising the relevance of peripheral interactions. J Hypertens 2001; 19: 1713–1716.

    Article  CAS  PubMed  Google Scholar 

  41. Grassi G, Seravalle G, Dell'Oro R, et al: CROSS Study. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens 2003; 21: 1761–1769.

    Article  CAS  PubMed  Google Scholar 

  42. Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ : Enalapril and losartan reduce sympathetic hyperactivity in patients with chronic renal failure. J Am Soc Nephrol 2003; 14: 425–430.

    Article  CAS  PubMed  Google Scholar 

  43. Grassi G, Cattaneo BM, Seravalle G, et al: Effects of chronic ACE inhibition on sympathetic nerve traffic and baroreflex control of circulation in heart failure. Circulation 1997; 96: 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  44. Grassi G : Leptin, sympathetic nervous system, and baroreflex function. Curr Hypertens Rep 2004; 6: 236–240.

    Article  PubMed  Google Scholar 

  45. Rahmouni K, Correia ML, Haynes WG, Mark AL : Obesity-associated hypertension: new insights into mechanisms. Hypertension 2005; 45: 9–14.

    Article  CAS  PubMed  Google Scholar 

  46. Cohn JN, Levine TB, Olivari MT, et al: Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819–823.

    Article  CAS  PubMed  Google Scholar 

  47. Rouleau JL, Packer M, Moye L, et al: Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J Am Coll Cardiol 1994; 24: 583–591.

    Article  CAS  PubMed  Google Scholar 

  48. Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye DM : Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J 2001; 22: 1136–1143.

    Article  CAS  PubMed  Google Scholar 

  49. Gerson MC, McGuire N, Wagoner LE : Sympathetic nervous system function as measured by I-123 metaiodobenzylguanidine predicts transplant-free survival in heart failure patients with idiopathic dilated cardiomyopathy. J Card Fail 2003; 9: 384–391.

    Article  PubMed  Google Scholar 

  50. Bristow MR, Krause-Steinrauf H, Nuzzo R, et al: Effect of baseline or changes in adrenergic activity on clinical outcomes in the beta-blocker evaluation of survival trial. Circulation 2004; 110: 1437–1442.

    Article  CAS  PubMed  Google Scholar 

  51. Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B : Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J 2005; 26: 906–913.

    Article  PubMed  Google Scholar 

  52. Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B : Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 2001; 57: 833–838.

    Article  CAS  PubMed  Google Scholar 

  53. Copie X, Hnatkova K, Staunton A, Fei L, Camm AJ, Malik M : Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J Am Coll Cardiol 1996; 27: 270–276.

    Article  CAS  PubMed  Google Scholar 

  54. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ, ATRAMI (Autonomic Tone and Reflexes after Myocardial Infarction) Investigators : Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998; 351: 478–484.

    Article  CAS  PubMed  Google Scholar 

  55. Benedict CR, Shelton B, Johnstone DE, SOLVD Investigators : Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. Circulation 1996; 94: 690–697.

    Article  CAS  PubMed  Google Scholar 

  56. Endo A, Kinugawa T, Ogino K, et al: Cardiac and plasma catecholamine responses to exercise in patients with type 2 diabetes: prognostic implications for cardiac-cerebrovascular events. Am J Med Sci 2000; 320: 24–30.

    Article  CAS  PubMed  Google Scholar 

  57. Zoccali C, Mallamaci F, Parlongo S, et al: Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 2002; 105: 1354–1359.

    Article  CAS  PubMed  Google Scholar 

  58. Mancia G, Sega R, Cesana GC, et al: Metabolic syndrome in PAMELA population: prevalence, prognostic value, out-of-office blood pressures and cardiac damage. J Hypertens 2005; 23: S134 ( Abstract).

    Google Scholar 

  59. Sen S, Tarazi RC, Khairallah PA, Bumpus FM : Cardiac hypertrophy in spontaneously hypertensive rats. Circ Res 1974; 35: 775–781.

    Article  CAS  PubMed  Google Scholar 

  60. Patel MB, Stewart JM, Loud AV, et al: Altered function and structure of the heart in dogs with chronic elevation in plasma norepinephrine. Circulation 1991; 84: 2091–2100.

    Article  CAS  PubMed  Google Scholar 

  61. Kelm M, Schafer S, Mingers S, et al: Left ventricular mass is linked to cardiac noradrenaline in normotensive and hypertensive patients. J Hypertens 1996; 14: 1357–1364.

    Article  CAS  PubMed  Google Scholar 

  62. Zoccali C, Mallamaci F, Tripepi G, et al: Norepinephrine and concentric hypertrophy in patients with end-stage renal disease. Hypertension 2002; 40: 41–46.

    Article  CAS  PubMed  Google Scholar 

  63. Seo HS, Kang TS, Park S, et al: Insulin resistance is associated with arterial stiffness in nondiabetic hypertensives independent of metabolic status. Hypertens Res 2005; 28: 945–951.

    Article  PubMed  Google Scholar 

  64. Grassi G, Giannattasio C, Failla M, et al: Sympathetic modulation of radial artery compliance in congestive heart failure. Hypertension 1995; 26: 348–354.

    Article  CAS  PubMed  Google Scholar 

  65. Grassi G, Giannattasio C : Obesity and vascular stiffness: when body fat has an adverse impact on arterial dynamics. J Hypertens 2005; 23: 1789–1791.

    Article  CAS  PubMed  Google Scholar 

  66. De Backer G, Ambrosioni E, Borch-Johnsen K, et al: European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J 2003; 24: 1601–1610.

    Article  PubMed  Google Scholar 

  67. European Society of Hypertension–European Society of Cardiology Guidelines Committee : 2003 European Society of Hypertension–European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011–1053.

  68. Grundy SM, Cleeman JI, Daniels SR, et al: Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112: 2735–2752.

    Article  PubMed  Google Scholar 

  69. Takeuchi H, Saitoh S, Takagi S, et al: Metabolic syndrome and cardiac disease in Japanese men: applicability of the concept of metabolic syndrome defined by the National Cholesterol Education Program–Adult Treatment Panel III to Japanese men—the Tanno and Sobetsu Study. Hypertens Res 2005; 28: 203–208.

    Article  PubMed  Google Scholar 

  70. Palatini P, Benetos A, Grassi G, et al: Identification and management of the hypertensive patient with elevated heart rate: statement of a European Society of Hypertension Consensus Meeting. J Hypertens 2006; 24: 603–610.

    Article  CAS  PubMed  Google Scholar 

  71. Grassi G, Seravalle G, Colombo M, et al: Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 1998; 97: 2037–2042.

    Article  CAS  PubMed  Google Scholar 

  72. Grassi G, Seravalle G, Calhoun DA, Mancia G : Physical training and baroreceptor control of sympathetic nerve activity in humans. Hypertension 1994; 23: 294–301.

    Article  CAS  PubMed  Google Scholar 

  73. Iwane M, Arita M, Tomimoto S, et al: Walking 10,000 steps/day or more reduces blood pressure and sympathetic nerve activity in mild essential hypertension. Hypertens Res 2000; 23: 573–580.

    Article  CAS  PubMed  Google Scholar 

  74. Grassi G : Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens 2004; 13: 513–519.

    Article  PubMed  Google Scholar 

  75. Grassi G : Neuroadrenergic effects of calcium channel blockers: a developing concept. J Hypertens 2004; 22: 887–888.

    Article  CAS  PubMed  Google Scholar 

  76. van Zwieten PA : Centrally acting imidazoline I1−receptor agonists: do they have a place in the management of hypertension? Am J Cardiovasc Drugs 2001; 1: 321–326.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Medicina Clinica, Istituto di Clinica Medica, Prevenzione e Biotecnologie Sanitarie, Università Milano-Bicocca, Ospedale San Gerardo, Monza (Milan), Italy

    Guido Grassi

  2. Istituto Auxologico Italiano, Milan, Italy

    Guido Grassi

  3. Centro Interuniversitario di Fisiologia Clinica e Ipertensione, Università di Milano, Milano-Bicocca, Italy

    Guido Grassi

Authors
  1. Guido Grassi
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Guido Grassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassi, G. Sympathetic Overdrive and Cardiovascular Risk in the Metabolic Syndrome. Hypertens Res 29, 839–847 (2006). https://doi.org/10.1291/hypres.29.839

Download citation

  • Received: 08 May 2006

  • Accepted: 19 July 2006

  • Issue date: 01 November 2006

  • DOI: https://doi.org/10.1291/hypres.29.839

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • metabolic syndrome
  • sympathetic nervous system
  • hypertension
  • obesity
  • antihypertensive drugs

This article is cited by

  • Dietary salt intake predicts future development of metabolic syndrome in the general population

    • Hiroyuki Takase
    • Kazusa Hayashi
    • Yasuaki Dohi

    Hypertension Research (2023)

  • High blood pressure with elevated resting heart rate: a high risk “Sympathetic” clinical phenotype

    • Guido Grassi
    • Raffaella Dell’Oro
    • Fosca Quarti-Trevano

    Hypertension Research (2023)

  • Comparison of EQ-5D-3L and metabolic components between patients with hyperhidrosis and the general population: a propensity score matching analysis

    • Yea-Chan Lee
    • Young Kyung You
    • Ji-Won Lee

    Quality of Life Research (2021)

  • Cardiovascular Risk Factors and Heart Rate Variability: Impact of the Level of the Threshold-Based Artefact Correction Used to Process the Heart Rate Variability Signal

    • Abel Plaza-Florido
    • J. M.A. Alcantara
    • Francisco B. Ortega

    Journal of Medical Systems (2021)

  • Changes in hemodynamics associated with metabolic syndrome are more pronounced in women than in men

    • Pauliina Kangas
    • Antti Tikkakoski
    • Ilkka Pörsti

    Scientific Reports (2019)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited