Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Olmesartan Is an Angiotensin II Receptor Blocker with an Inhibitory Effect on Angiotensin-Converting Enzyme
Download PDF
Download PDF
  • Original Article
  • Published: 01 November 2006

Olmesartan Is an Angiotensin II Receptor Blocker with an Inhibitory Effect on Angiotensin-Converting Enzyme

  • Jun Agata1,
  • Nobuyuki Ura1,
  • Hideaki Yoshida1,
  • Yasuyuki Shinshi1,
  • Haruki Sasaki1,
  • Masaya Hyakkoku1,
  • Shinya Taniguchi1 &
  • …
  • Kazuaki Shimamoto1 

Hypertension Research volume 29, pages 865–874 (2006)Cite this article

  • 10k Accesses

  • 9 Altmetric

  • Metrics details

Abstract

Angiotensin II receptor blockers (ARBs) are widely used for the treatment of hypertension. It is believed that treatment with an ARB increases the level of plasma angiotensin II (Ang II) because of a lack of negative feedback on renin activity. However, Ichikawa (Hypertens Res 2001; 24: 641–646) reported that long-term treatment of hypertensive patients with olmesartan resulted in a reduction in plasma Ang II level, though the mechanism was not determined. It has been reported that angiotensin 1-7 (Ang-(1-7)) potentiates the effect of bradykinin and acts as an angiotensin-converting enzyme (ACE) inhibitor. It is known that ACE2, which was discovered as a novel ACE-related carboxypeptidase in 2000, hydrolyzes Ang I to Ang-(1-9) and also Ang II to Ang-(1-7). It has recently been reported that olmesartan increases plasma Ang-(1-7) through an increase in ACE2 expression in rats with myocardial infarction. We hypothesized that over-expression of ACE2 may be related to a reduction in Ang II level and the cardioprotective effect of olmesartan. Administration of 0.5 mg/kg/day of olmesartan for 4 weeks to 12-week-old stroke-prone spontaneously hypertensive rats (SHRSP) significantly reduced blood pressure and left ventricular weight compared to those in SHRSP given a vehicle. Co-administration of olmesartan and (D-Ala7)−Ang-(1-7), a selective Ang-(1-7) antagonist, partially inhibited the effect of olmesartan on blood pressure and left ventricular weight. Interestingly, co-administration of (D-Ala7)−Ang-(1-7) with olmesartan significantly increased the plasma Ang II level (453.2±113.8 pg/ml) compared to olmesartan alone (144.9±27.0 pg/ml, p<0.05). Moreover, olmesartan significantly increased the cardiac ACE2 expression level compared to that in Wistar Kyoto rats and SHRSP treated with a vehicle. Olmesartan significantly improved cardiovascular remodeling and cardiac nitrite/nitrate content, but co-administration of olmesartan and (D-Ala7)−Ang-(1-7) partially reversed this anti-remodeling effect and the increase in nitrite/nitrate. These findings suggest that olmesartan may exhibit an ACE inhibitory action in addition to an Ang II receptor blocking action, prevent an increase in Ang II level, and protect cardiovascular remodeling through an increase in cardiac nitric oxide production and endogenous Ang-(1-7) via over-expression of ACE2.

Similar content being viewed by others

Allisartan isoproxil reduces mortality of stroke-prone rats and protects against cerebrovascular, cardiac, and aortic damage

Article 17 May 2021

Angiotensin II blockers improve cardiac coronary flow under hemodynamic pressure overload

Article 10 February 2021

Transgenic rat with ubiquitous expression of angiotensin-(1-7)-producing fusion protein: a new tool to study the role of protective arm of the renin-angiotensin system in the pathophysiology of cardio-renal diseases

Article Open access 13 November 2024

Article PDF

References

  1. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ : A human homolog of angiotensin converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000; 275: 33238–33243.

    Article  CAS  PubMed  Google Scholar 

  2. Donoghue M, Hsieh F, Baronas E, et al: A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000; 87: e1–e9.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI : Counterregulatory actions of angiotensin-(1–7). Hypertension 1997; 30: 535–541.

    Article  CAS  PubMed  Google Scholar 

  4. Loot AE, Roks AJ, Henning RH, et al: Angiotenisn-(1–7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 2002; 105: 1548–1550.

    Article  CAS  PubMed  Google Scholar 

  5. Brosnihihan KB, Li P, Ferrario CM : Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 1996; 27: 523–528.

    Article  Google Scholar 

  6. Roks AJM, van Geel PP, Pinto YM, et al: Angiotensin-(1–7) is a modulator of the human renin-angiotensin system. Hypertension 1999; 34: 296–301.

    Article  CAS  PubMed  Google Scholar 

  7. Ueda S, Masumori-Maemoto S, Ashino K, et al: Angiotensin-(1–7) attenuates vasoconstriction evoked by angiotensin II but not by noradrenaline in man. Hypertenison 2000; 35: 998–1001.

    Article  CAS  Google Scholar 

  8. Gorelik G, Carbini LA, Scicli AG : Angiotensin-(1–7) induces bradykinin-mediated relaxation in porcine coronary artery. J Pharmacol Exp Ther 1998; 286: 403–410.

    CAS  PubMed  Google Scholar 

  9. Deddish PA, Marcic B, Jackman HL, Wang H-Z, Skidgel RA, Erdos EG : N-domain–specific substrate and C-domain inhibitors of angiotensin-converting enzyme: angiotenisn-(1–7) and keto-ACE. Hypertension 1998; 31: 912–917.

    Article  CAS  PubMed  Google Scholar 

  10. Minshall RD, Tan F, Nakamura F, et al: Potentiation of the actions of bradykinin by angiotensin B2 recoptors and angiotensin-converting enzyme in CHO cells. Circ Res 1997; 81: 848–856.

    Article  CAS  PubMed  Google Scholar 

  11. Benzing T, Fleming I, Blaukat A, Muller-Esterl W, Busse R : Angiotensin-converting enzyme inhibitor ramiprilat interferes with the sequenstration of the B2 kinin receptor within the plasma membrane of native endothelial cells. Circulation 1999; 99: 2034–2040.

    Article  CAS  PubMed  Google Scholar 

  12. Danser AHJ, Tom B, de Vries R, Saxena PR : L-NAME–resistant bradykinin-induced relaxation in porcine coronary arteries is NO-dependent: effect of ACE inhibition. Br J Pharmacol 2000; 131: 195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ichikawa S, Takayama Y : Long-term effects of olmesartan, an Ang II receptor antagonist, on blood pressure and the renin-angiotensin-aldosterone system in hypertensive patients. Hypertens Res 2001; 24: 641–646.

    Article  CAS  PubMed  Google Scholar 

  14. Gavras I, Gavras H, Eprosartan Multinational Study Group: Effects of eprosartan versus enalapril in hypertensive patitents on the renin-angiotensin-aldosterone and safety parameters: results from a 26-week, double-blind, multicentre study. Curr Med Res Opin 1999; 15: 15–24.

    Article  CAS  PubMed  Google Scholar 

  15. Grossman E, Peleg E, Carroll J, Shamiss A, Rosenthal T : Hemodynamic and humoral effects of the angiotensin II antagonist losartan in essentioal hypertension. Am J Hypertens 1994; 7: 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  16. Bouer IH, Reams GP, Wu Z, Lau-Sieckman A : Effects of losartan on the renin-angiotensin-aldosterone axis in essential hypertension. J Hum Hypertens 1995; 9: 237–243.

    Google Scholar 

  17. Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM : Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension 2004; 43: 970–976.

    Article  CAS  PubMed  Google Scholar 

  18. Tom B, de Vries R, Saxena PR, Danser AHJ : Bradykinin potentiation by angiotensin-(1–7) and ACE inhibitors correlates with ACE C- and N-domain blockade. Hypertension 2001; 38: 95–99.

    Article  CAS  PubMed  Google Scholar 

  19. Benter IF, Ferrario CM, Morris M, Diz DI : Antihypertensive actions of angiotensin-(1–7) in spontaneously hypertensive rats. Am J Physiol 1995; 269: H313–H319.

    CAS  PubMed  Google Scholar 

  20. Widdop RE, Sampey DB, Jarrott B : Cardiovascular effects of angiotenisn-(1–7) in conscious spontaneously hypertensive rats. Hypertension 1999; 34: 964–968.

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi N, Nishikimi T, Horinaka S, Ishimitsu T, Matsuoka H : Effects of imidapril on NOS expression and myocardial remodeling in failing heart of Dahl-salt sensitive hypertensive rats. Cardiovasc Res 1999; 44: 518–526.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi N, Horinaka S, Mita S, et al: Aminoguanidine inhibits mitogen-activated protein kinase and improves cardiac performance and cardiovascular remodeling in failing hearts of salt-sensitive hypertensive rats. J Hypertens 2002; 20: 2475–2485.

    Article  CAS  PubMed  Google Scholar 

  23. Turner AJ, Tipnis SR, Guy JL, Rice G, Hooper NM : ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a monologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can J Physiol Pharmacol 2002; 80: 346–353.

    Article  CAS  PubMed  Google Scholar 

  24. Turner AJ, Hooper NM : The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci 2002; 23: 177–183.

    Article  CAS  PubMed  Google Scholar 

  25. Crackower MA, Sarao R, Oudit GY, et al: Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417: 822–828.

    Article  CAS  PubMed  Google Scholar 

  26. Vickers C, Hales P, Kaushik V, et al: Hydrolysis of biological peptides by human angiotensin-converting enzyme–related carboxypeptidase. J Biol Chem 2002; 277: 14838–14843.

    Article  CAS  PubMed  Google Scholar 

  27. Gallagher PE, Chappell MC, Bernish WB, Tallant EA : ACE2 expression in brain: angiotensin II down-regulates ACE2 in astrocytes. Hypertension 2003; 42: 389.

    Google Scholar 

  28. Pool JL, Glazer R, Chiang YT, Gatlin M : Dose-response efficacy of valsartan, a new angiotensin II receptor blocker. J Hum Hypertens 1999; 13: 275–281.

    Article  CAS  PubMed  Google Scholar 

  29. Fogari R, Mugellini A, Zoppi A, et al: Efficacy of losartan, valsartan, and telmisartan in patients with mild to moderate hypertension: a double-blind, placebo-controlled, crossover study using ambulatory blood pressure monitoring. Curr Ther Res Clin Exp 2002; 63: 1–14.

    Article  CAS  Google Scholar 

  30. Mendes AC, Ferreira AJ, Pinheiro SV, Santos RA : Chronic infusion of angiotensin-(1–7) reduces heart angiotensin II levels in rats. Regul Pept 2005; 125: 29–34.

    Article  CAS  PubMed  Google Scholar 

  31. Walters PE, Gaspari TA, Widdop RE : Angiotensin-(1–7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 2005; 45: 960–966.

    Article  CAS  PubMed  Google Scholar 

  32. Agata J, Chao L, Chao J : Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension 2002; 40: 653–659.

    Article  CAS  PubMed  Google Scholar 

  33. Santos RA, Simoes e Silva AC, Maric C, et al: Angiotensin-(1–7) is an endogenous ligand for the G protein–coupled receptor Mas. Proc Nat Acad Sci U S A 2003; 100: 8258–8263.

    Article  CAS  Google Scholar 

  34. Taliant EA, Chappell MC, Ferrario CM, Gallagher PE : Inhibition of MAP kinase activity by angiotensin-(1–7) in vascular smooth muscle cells in mediated by the Mas receptor. Hypertension 2004; 43: 1348 ( Abstract).

    Google Scholar 

  35. Strawn WB, Ferrario CM, Tallant EA : Angiotensin-(1–7) reduces smooth muscle growth after vascular injury. Hypertension 1999; 33: 207–211.

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira AJ, Santos RAS, Almeida AP : Angiotensin-(1–7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 2001; 38: 665–668.

    Article  CAS  PubMed  Google Scholar 

  37. Averill DB, Ishiyama Y, Chappell MC, Ferrario CM : Cardiac angiotensin-(1–7) in ischemic cardiomyopathy. Circulation 2003; 108: 2141–2146.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan

    Jun Agata, Nobuyuki Ura, Hideaki Yoshida, Yasuyuki Shinshi, Haruki Sasaki, Masaya Hyakkoku, Shinya Taniguchi & Kazuaki Shimamoto

Authors
  1. Jun Agata
    View author publications

    Search author on:PubMed Google Scholar

  2. Nobuyuki Ura
    View author publications

    Search author on:PubMed Google Scholar

  3. Hideaki Yoshida
    View author publications

    Search author on:PubMed Google Scholar

  4. Yasuyuki Shinshi
    View author publications

    Search author on:PubMed Google Scholar

  5. Haruki Sasaki
    View author publications

    Search author on:PubMed Google Scholar

  6. Masaya Hyakkoku
    View author publications

    Search author on:PubMed Google Scholar

  7. Shinya Taniguchi
    View author publications

    Search author on:PubMed Google Scholar

  8. Kazuaki Shimamoto
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Jun Agata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agata, J., Ura, N., Yoshida, H. et al. Olmesartan Is an Angiotensin II Receptor Blocker with an Inhibitory Effect on Angiotensin-Converting Enzyme. Hypertens Res 29, 865–874 (2006). https://doi.org/10.1291/hypres.29.865

Download citation

  • Received: 10 April 2006

  • Accepted: 19 July 2006

  • Issue date: 01 November 2006

  • DOI: https://doi.org/10.1291/hypres.29.865

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • olmesartan
  • angiotensin-(1-7)
  • angiotensin II
  • angiotensin-converting enzyme 2

This article is cited by

  • ACE2 inhibits proliferation of smooth muscle cell through AT1R and its downstream signaling pathway

    • Jingjing Gong
    • Zhuoqiang Lu
    • Xueqing Jin

    Journal of Biosciences (2023)

  • A comprehensive evaluation of early potential risk factors for disease aggravation in patients with COVID-19

    • Qiang Tang
    • Yanwei Liu
    • Maojun Di

    Scientific Reports (2021)

  • Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveals unique host responses, viral diversification, and drug interactions

    • Daniel Butler
    • Christopher Mozsary
    • Christopher E. Mason

    Nature Communications (2021)

  • Angiotensin-[1–7] attenuates kidney injury in experimental Alport syndrome

    • Hong Sang Choi
    • In Jin Kim
    • Eun Hui Bae

    Scientific Reports (2020)

  • Olmesartan medoxomil/amlodipine/hydrochlorothiazide 20 mg/5 mg/12.5 mg fixed-dose combination in hypertension: a profile of its use

    • Katherine A. Lyseng-Williamson

    Drugs & Therapy Perspectives (2018)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited