Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Transforming Growth Factor-β Signaling Enhances Transdifferentiation of Macrophages into Smooth Muscle–Like Cells
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 2006

Transforming Growth Factor-β Signaling Enhances Transdifferentiation of Macrophages into Smooth Muscle–Like Cells

  • Kozo Ninomiya1,
  • Akihiro Takahashi2,
  • Yoshio Fujioka1,
  • Yuichi Ishikawa3 &
  • …
  • Mitsuhiro Yokoyama1 

Hypertension Research volume 29, pages 269–276 (2006)Cite this article

  • 2343 Accesses

  • 3 Altmetric

  • Metrics details

Abstract

Hemopoietic cells or bone marrow–derived cells contribute to tissue formation, possibly by transdifferentiation into smooth muscle cells (SMCs) or myofibroblasts. In this study our goal is to examine the effects of transforming growth factor-β1 (TGF-β1) on the transdifferentiation of the monocyte/macrophage lineage into SMC-like cells. Using rat peritoneal exudate macrophages, we investigated the expression of smooth muscle–specific differentiation markers, such as α-smooth muscle actin, embryonic smooth muscle myosin heavy chain, and calponin. The treatment of macrophages with TGF-β1 enhanced the expression of SMC-specific markers at day 4; after 7 days in culture, a higher level of expression (approximately 3- to 5-fold) was detected on Western blots. In contrast, TGF-β1 decreased the expression of CD11b, which is a macrophage marker. Furthermore, we examined the effect of the TGF-β type 1 receptor inhibitor SB-431542 and a replication-defective adenovirus construct expressing Smad7 (Adeno-Smad7), which inhibits TGF-β signaling by interfering with the activation of other Smad proteins. Both SB-431542 and Adeno-Smad7 suppressed the expression of SMC-specific markers. These results indicated that TGF-β signaling is essential for the transdifferentiation of macrophages into SMC-like cells. Elucidating the mechanism by which macrophages transdifferentiate into SMC-like cells may reveal new therapeutic targets for preventing vascular diseases.

Similar content being viewed by others

Bone marrow-derived extracellular vesicles carry the TGF-β signal transducer Smad2 to preserve hematopoietic stem cells in mice

Article Open access 05 April 2023

M2-like macrophages derived from THP-1 cells promote myofibroblast differentiation of synovial fibroblasts in association with the TGF-β1/SMAD2/3 signaling pathway

Article Open access 15 July 2025

Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms

Article 22 February 2021

Article PDF

References

  1. Ross R : Atherosclerosis—an inflammatory disease. New Engl J Med 1999; 340: 115–126.

    Article  CAS  Google Scholar 

  2. Libby P : Inflammation in atherosclerosis. Nature 2002; 420: 868–874.

    Article  CAS  Google Scholar 

  3. Yasunari K, Maeda K, Nakamura M, Watanabe T, Yoshikawa J : Benidipine, a long-acting calcium channel blocker, inhibits oxidative stress in polymorphonuclear cells in patients with essential hypertension. Hypertens Res 2005; 28: 107–112.

    Article  CAS  Google Scholar 

  4. Campbell JH, Efendy JL, Han C, Girjes AA, Campbell GR : Haemopoietic origin of myofibroblasts formed in the peritoneal cavity in response to a foreign body. J Vasc Res 2000; 37: 364–371.

    Article  CAS  Google Scholar 

  5. Han CI, Campbell GR, Campbell JH : Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res 2001; 38: 113–119.

    Article  CAS  Google Scholar 

  6. Hoenig MR, Campbell GR, Rolfe BE, Campbell JH : Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler Thromb Vasc Biol 2005; 25: 1128–1134.

    Article  CAS  Google Scholar 

  7. Jabs A, Moncada GA, Nichols CE, Waller EK, Wilcox JN : Peripheral blood mononuclear cells acquire myofibroblast characteristics in granulation tissue. J Vasc Res 2005; 42: 174–180.

    Article  Google Scholar 

  8. Asahara T, Murohara T, Sullivan A, et al: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    Article  CAS  Google Scholar 

  9. Sata M, Saiura A, Kunisato A, et al: Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8: 403–409.

    Article  CAS  Google Scholar 

  10. Yeh ET, Zhang S, Wu HD, Korbling M, Willerson JT, Estrov Z : Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 2003; 108: 2070–2073.

    Article  Google Scholar 

  11. Imanishi T, Hano T, Nishio I : Angiotensin II potentiates vascular endothelial growth factor–induced proliferation and network formation of endothelial progenitor cells. Hypertens Res 2004; 27: 101–108.

    Article  CAS  Google Scholar 

  12. Lijnen PJ, Petrov VV, Fagard RH : Association between transforming growth factor-β and hypertension. Am J Hypertens 2003; 16: 604–611.

    Article  CAS  Google Scholar 

  13. Joki N, Kaname S, Hirakata M, et al: Tyrosine-kinase dependent TGF-β and extracellular matrix expression by mechanical stretch in vascular smooth muscle cells. Hypertens Res 2000; 23: 91–99.

    Article  CAS  Google Scholar 

  14. Diamond JA, Phillips RA : Hypertensive heart disease. Hypertens Res 2005; 28: 191–202.

    Article  CAS  Google Scholar 

  15. Massague J : TGF-β signal transduction. Annu Rev Biochem 1998; 67: 753–791.

    Article  CAS  Google Scholar 

  16. Massague J, Weis-Garcia F : Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv 1996; 27: 41–64.

    CAS  PubMed  Google Scholar 

  17. Kobayashi N, Nakano S, Mori Y, et al: Benidipine inhibits expression of ET-1 and TGF-β1 in Dahl salt-sensitive hypertensive rats. Hypertens Res 2001; 24: 241–250.

    Article  CAS  Google Scholar 

  18. Tahira Y, Fukuda N, Endo M, et al: Transforming growth factor-β expression in cardiovascular organs in stroke-prone spontaneously hypertensive rats with the development of hypertension. Hypertens Res 2002; 25: 911–918.

    Article  CAS  Google Scholar 

  19. Saito K, Ishizaka N, Aizawa T, et al: Role of aberrant iron homeostasis in the upregulation of transforming growth factor-β1 in the kidney of angiotensin II–induced hypertensive rats. Hypertens Res 2004; 27: 599–607.

    Article  CAS  Google Scholar 

  20. Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin CH : Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-β. J Biol Chem 1994; 269: 20172–20178.

    CAS  PubMed  Google Scholar 

  21. Nakao A, Imamura T, Souchelnytskyi S, et al: TGF-β receptor–mediated signalling through Smad2, Smad3 and Smad4. EMBO J 1997; 16: 5353–5362.

    Article  CAS  Google Scholar 

  22. Heldin CH, Miyazono K, ten Dijke P : TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471.

    Article  CAS  Google Scholar 

  23. Imamura T, Takase M, Nishihara A, et al: Smad6 inhibits signalling by the TGF-β superfamily. Nature 1997; 389: 622–626.

    Article  CAS  Google Scholar 

  24. Nakao A, Afrakhte M, Moren A, et al: Identification of Smad7, a TGF β−inducible antagonist of TGF-β signalling. Nature 1997; 389: 631–635.

    Article  CAS  Google Scholar 

  25. Chen HB, Rud JG, Lin K, Xu L : Nuclear targeting of transforming growth factor-β−activated Smad complexes. J Biol Chem 2005; 280: 21329–21336.

    Article  CAS  Google Scholar 

  26. Fujii M, Takeda K, Imamura T, et al: Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell 1999; 10: 3801–3813.

    Article  CAS  Google Scholar 

  27. Takahashi A, Kureishi Y, Yang J, et al: Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Mol Cell Biol 2002; 22: 4803–4814.

    Article  CAS  Google Scholar 

  28. Laping NJ, Grygielko E, Mathur A, et al: Inhibition of transforming growth factor (TGF)-β1−induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol Pharmacol 2002; 62: 58–64.

    Article  CAS  Google Scholar 

  29. Inman GJ, Nicolas FJ, Callahan JF, et al: SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor–like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002; 62: 65–74.

    Article  CAS  Google Scholar 

  30. Watabe T, Nishihara A, Mishima K, et al: TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell–derived endothelial cells. J Cell Biol 2003; 163: 1303–1311.

    Article  CAS  Google Scholar 

  31. Mattey DL, Dawes PT, Nixon NB, Slater H : Transforming growth factor β1 and interleukin 4 induced alpha smooth muscle actin expression and myofibroblast-like differentiation in human synovial fibroblasts in vitro: modulation by basic fibroblast growth factor. Ann Rheum Dis 1997; 56: 426–431.

    Article  CAS  Google Scholar 

  32. Evans RA, Tian YC, Steadman R, Phillips AO : TGF-β1−mediated fibroblast-myofibroblast terminal differentiation—the role of Smad proteins. Exp Cell Res 2003; 282: 90–100.

    Article  CAS  Google Scholar 

  33. Sappino AP, Schurch W, Gabbiani G : Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 1990; 63: 144–161.

    CAS  PubMed  Google Scholar 

  34. Derynck R, Zhang YE : Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003; 425: 577–584.

    Article  CAS  Google Scholar 

  35. Sato M, Kawai-Kowase K, Sato H, et al: c-Src and hydrogen peroxide mediate transforming growth factor-β1−induced smooth muscle cell–gene expression in 10T1/2 cells. Arterioscler Thromb Vasc Biol 2005; 25: 341–347.

    Article  CAS  Google Scholar 

  36. Mallawaarachchi CM, Weissberg PL, Siow RC : Smad7 gene transfer attenuates adventitial cell migration and vascular remodeling after balloon injury. Arterioscler Thromb Vasc Biol 2005; 25: 1383–1387.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

    Kozo Ninomiya, Yoshio Fujioka & Mitsuhiro Yokoyama

  2. Division of Clinical Preventive Medicine, Department of Community Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan

    Akihiro Takahashi

  3. Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Japan

    Yuichi Ishikawa

Authors
  1. Kozo Ninomiya
    View author publications

    Search author on:PubMed Google Scholar

  2. Akihiro Takahashi
    View author publications

    Search author on:PubMed Google Scholar

  3. Yoshio Fujioka
    View author publications

    Search author on:PubMed Google Scholar

  4. Yuichi Ishikawa
    View author publications

    Search author on:PubMed Google Scholar

  5. Mitsuhiro Yokoyama
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Yoshio Fujioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ninomiya, K., Takahashi, A., Fujioka, Y. et al. Transforming Growth Factor-β Signaling Enhances Transdifferentiation of Macrophages into Smooth Muscle–Like Cells. Hypertens Res 29, 269–276 (2006). https://doi.org/10.1291/hypres.29.269

Download citation

  • Received: 14 November 2005

  • Accepted: 13 January 2006

  • Issue date: 01 April 2006

  • DOI: https://doi.org/10.1291/hypres.29.269

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • transforming growth factor-β
  • macrophages
  • smooth muscle cell
  • transdifferentiation

This article is cited by

  • Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions

    • Claire Molony
    • Damien King
    • Paul A. Cahill

    Stem Cell Reviews and Reports (2021)

  • The significance of macrophage phenotype in cancer and biomaterials

    • Hannah C Bygd
    • Kiva D Forsmark
    • Kaitlin M Bratlie

    Clinical and Translational Medicine (2014)

  • Extracellular matrix and the mechanics of large artery development

    • Jeffrey K. Cheng
    • Jessica E. Wagenseil

    Biomechanics and Modeling in Mechanobiology (2012)

  • Monocyte polarization: the relationship of genome-wide changes in H4 acetylation with polarization

    • Z Zhang
    • L Song
    • K E Sullivan

    Genes & Immunity (2011)

  • Coexpression of myofibroblast and macrophage markers: novel evidence for an in vivo plasticity of chorioamniotic mesodermal cells of the human placenta

    • Sung-Su Kim
    • Roberto Romero
    • Chong Jai Kim

    Laboratory Investigation (2008)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited