Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Angiotensin II Receptor Blocker Reduces Oxidative Stress and Attenuates Hypoxia-Induced Left Ventricular Remodeling in Apolipoprotein E–Knockout Mice
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 2007

Angiotensin II Receptor Blocker Reduces Oxidative Stress and Attenuates Hypoxia-Induced Left Ventricular Remodeling in Apolipoprotein E–Knockout Mice

  • Chika Yamashita1,
  • Tetsuya Hayashi2,
  • Tatsuhiko Mori2,
  • Naoko Tazawa1,
  • Chol-Jun Kwak1,
  • Daisuke Nakano1,
  • Koichi Sohmiya2,
  • Yoshikatsu Okada3,
  • Yasushi Kitaura2 &
  • …
  • Yasuo Matsumura1 

Hypertension Research volume 30, pages 1219–1230 (2007)Cite this article

  • 1330 Accesses

  • Metrics details

Abstract

Elevated superoxide formation in cardiac extracts of apolipoprotein E–knockout (apoE-KO) mice has been reported. In addition, we previously reported that hypoxia increased oxidative stress in the aortas of apoE-KO mice, although we did not examine the effect of hypoxia on the heart. The aim of this study was to investigate the effect of chronic hypoxia on the left ventricular (LV) remodeling in apoE-KO mice treated with or without an angiotensin II receptor blocker. Male apoE-KO mice (n=83) and wild-type mice (n=34) at 15 weeks of age were kept under hypoxic conditions (oxygen, 10.0±0.5%) and treated with olmesartan (3 mg/kg/day) or vehicle for 3 weeks. Although LV pressure was not changed, hypoxia caused hypertrophy of cardiomyocytes and increased interstitial fibrosis in the LV myocardium. Furthermore, nuclear factor-κB (NF-κB) and matrix metalloproteinase (MMP)-9 activities were increased in apoE-KO mice exposed to chronic hypoxia. Olmesartan effectively suppressed the 4-hydroxy-2-nonenal protein expression and NF-κB and MMP-9 activities, and preserved the fine structure of the LV myocardium without affecting the LV pressure. In conclusion, olmesartan reduced oxidative stress, and attenuated the hypoxia-induced LV remodeling, in part through the inhibition of NF-κB and MMP-9 activities, in apoE-KO mice.

Similar content being viewed by others

Right ventricular myocardial oxygen tension is reduced in monocrotaline-induced pulmonary hypertension in the rat and restored by myo-inositol trispyrophosphate

Article Open access 09 September 2021

Electrocardiographic changes during sustained normobaric hypoxia in patients after myocardial infarction

Article Open access 14 October 2023

Characterization of the effects of oxymatrine on myocardial hypertrophy in spontaneously hypertensive rats through transcriptomics and metabolomics

Article Open access 25 September 2025

Article PDF

References

  1. Engstrom G, Lind P, Hedblad B, et al: Lung function and cardiovascular risk: relationship with inflammation-sensitive plasma proteins. Circulation 2002; 106: 2555–2560.

    Article  CAS  Google Scholar 

  2. Schafer H, Koehler U, Ewig S, Hasper E, Tasci S, Luderitz B : Obstructive sleep apnea as a risk marker in coronary artery disease. Cardiology 1999; 92: 78–84.

    Article  Google Scholar 

  3. Nakashima H, Katayama T, Takagi C, et al: Obstructive sleep apnoea inhibits the recovery of left ventricular function in patients with acute myocardial infarction. Eur Heart J 2006; 27: 2317–2322.

    Article  Google Scholar 

  4. Alchanatis M, Tourkohoriti G, Kosmas EN, et al: Evidence for left ventricular dysfunction in patients with obstructive sleep apnoea syndrome. Eur Respir J 2002; 20: 1239–1245.

    Article  CAS  Google Scholar 

  5. Pfeffer MA, Braunwald E : Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 1990; 81: 1161–1172.

    Article  CAS  Google Scholar 

  6. Chin K, Shimizu K, Nakamura T, et al: Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy. Circulation 1999; 100: 706–712.

    Article  CAS  Google Scholar 

  7. Robinson GV, Pepperell JC, Segal HC, Davies RJ, Stradling JR : Circulating cardiovascular risk factors in obstructive sleep apnea: data from randomized controlled trials. Thorax 2004; 59: 777–783.

    Article  CAS  Google Scholar 

  8. Li J, Thorne LN, Punjabi NM, et al: Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 2005; 97: 698–706.

    Article  CAS  Google Scholar 

  9. Kadotani H, Kadotani T, Young, et al: Association between apolipoprotein E epsilon4 and sleep-disordered breathing in adults. JAMA 2001; 285: 2888–2890.

    Article  CAS  Google Scholar 

  10. Gottli DJ, DeStefano AL, Foley DJ, et al: APOE ε4 is associated with obstructive sleep apnea/hypopnea. The Sleep Heart Health Study. Neurology 2004; 63: 664–668.

    Article  Google Scholar 

  11. Saarelainen S, Lehtimaki T, Kallonen E, et al: No relation between apolipoprotein E alleles and obstructive sleep apnea. Clin Genet 1998; 53: 147–148.

    Article  CAS  Google Scholar 

  12. Palmer LJ, Buxbaum SG, Larkin E, et al: A whole-genome scan for obstructive sleep apnea and obesity. Am J Hum Genet 2003; 72: 340–350.

    Article  CAS  Google Scholar 

  13. Nakano D, Hayashi T, Tazawa N, et al: Chronic hypoxia accelerates the progression of atherosclerosis in apolipoprotein E–knockout mice. Hypertens Res 2005; 28: 837–845.

    Article  CAS  Google Scholar 

  14. Wu JH, Hagaman J, Kim S, et al: Aortic constriction exacerbates atherosclerosis and induces cardiac dysfunction in mice lacking apolipoprotein E. Arterioscler Thromb Vasc Biol 2002; 22: 469–475.

    Article  CAS  Google Scholar 

  15. Hartley CJ, Reddy AK, Madala S, et al: Hemodynamic changes in apolipoprotein E–knockout mice. Am J Physiol 2000; 279: H2326–H2334.

    CAS  Google Scholar 

  16. Godecke A, Ziegler M, Ding Z, Schrader J : Endothelial dysfunction of coronary resistance vessels in apoE−/− mice involves NO but not prostacyclin-dependent mechanisms. Cardiovasc Res 2002; 53: 253–262.

    Article  CAS  Google Scholar 

  17. Kinugawa S, Tsutsui H, Hayashidani S, et al: Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 2000; 87: 392–398.

    Article  CAS  Google Scholar 

  18. Kawamura N, Kubota T, Kawano S, et al: Blockade of NF-κB improves cardiac function and survival without affecting inflammation in TNF-α−induced cardiomyopathy. Cardiovasc Res 2005; 66: 520–529.

    Article  CAS  Google Scholar 

  19. Gupta S, Young D, Sen S : Inhibition of NF-κB induces regression of cardiac hypertrophy, independent of blood pressure control, in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2005; 289: H20–H29.

    Article  CAS  Google Scholar 

  20. Li Y, Ha T, Gao X, et al: NF-κB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 2004; 287: H1712–H1720.

    Article  CAS  Google Scholar 

  21. Harada K, Sugaya T, Murakami K, Yazaki Y, Komuro I : Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation 1999; 100: 2093–2099.

    Article  CAS  Google Scholar 

  22. Inamoto S, Hayashi T, Tazawa N, et al: Angiotensin-II receptor blocker exerts cardioprotection in diabetic rats exposed to hypoxia. Circ J 2006; 70: 787–792.

    Article  CAS  Google Scholar 

  23. Mori T, Hayashi T, Sohmiya K, et al: Mechanisms of combined treatment with celiprolol and candesartan for ventricular remodeling in experimental heart failure. Circ J 2005; 69: 596–602.

    Article  CAS  Google Scholar 

  24. Hayashi T, James TN, Buckingham DC : Ultrastructure and immunohistochemistry of the coronary chemoreceptor in human and canine hearts. Am Heart J 1995; 129: 946–959.

    Article  CAS  Google Scholar 

  25. Matsuo T, Mori H, Nishimura Y, et al: Quantification of immunohistochemistry using an image analyser: correlation with hormone concentrations in pituitary adenomas. Histochem J 1995; 27: 989–996.

    Article  CAS  Google Scholar 

  26. Okuda N, Hayashi T, Mori T, et al: Nifedipine enhances the cardioprotective effect of an angiotensin-II receptor blocker in an experimental animal model of heart failure. Hypertens Res 2005; 28: 431–438.

    Article  CAS  Google Scholar 

  27. Rahman M, Nishiyama A, Guo P, et al: Effects of adrenomedullin on cardiac oxidative stress and collagen accumulation in aldosterone-dependent malignant hypertensive rats. J Pharmacol Exp Ther 2006; 318: 1323–1329.

    Article  CAS  Google Scholar 

  28. Hayashi T, Nozawa M, Sohmiya K, et al: Efficacy of pancreatic transplantation on cardiovascular alterations in diabetic rats: an ultrastructural and immunohistochemical study. Transplant Proc 1998; 30: 335–338.

    Article  CAS  Google Scholar 

  29. Shiina K, Tomiyama H, Takata Y, et al: Concurrent presence of metabolic syndrome in obstructive sleep apnea syndrome exacerbates the cardiovascular risk: a sleep clinic cohort study. Hypertens Res 2006; 29: 433–441.

    Article  Google Scholar 

  30. Tanigawa T, Tachibana N, Yamagishi K, et al: Relationship between sleep-disordered breathing and blood pressure levels in community-based samples of Japanese men. Hypertens Res 2004; 27: 479–484.

    Article  Google Scholar 

  31. McCarthy JJ, Parker A, Salem R, et al: Large scale association analysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes. J Med Genet 2004; 41: 334–341.

    Article  CAS  Google Scholar 

  32. Kurian KC, Rai P, Sankaran S, Jacob B, Chiong J, Miller AB : The effect of statins in heart failure: beyond its cholesterol-lowering effect. J Cardiac Failure 2006; 12: 473–478.

    Article  CAS  Google Scholar 

  33. Liu HW, Iwai M, Takeda-Matsubara Y, et al: Effect of estrogen and AT1 receptor blocker on neointima formation. Hypertension 2002; 40: 451–457.

    Article  Google Scholar 

  34. Jinno T, Iwai M, Li Z, et al: Calcium channel blocker azelnidipine enhances vascular protective effects of AT1 receptor blocker olmesartan. Hypertension 2004; 43: 263–269.

    Article  CAS  Google Scholar 

  35. Myslinski W, Dybala A, Mosiewicz J, Prystupa A, Hanzlik J : Cardiovascular abnormalities in patients with obstructive sleep apnoea syndrome. Wiad Lek 2005; 58: 78–83.

    PubMed  Google Scholar 

  36. Kumar R, Pasha O, Khan AP, Gupta V : Renin angiotensin aldosterone system and ACE I/D gene polymorphism in high-altitude pulmonary edema. Aviat Space Environ Med 2004: 75: 981–983.

    CAS  PubMed  Google Scholar 

  37. Chen L, Einbinder E, Zhang O, et al: Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 2005; 172: 915–920.

    Article  Google Scholar 

  38. Adamy C, Oliviero P, Eddahibi S, et al: Cardiac modulations of ANG II receptor expression in rats with hypoxic pulmonary hypertension. Am J Physiol Heart Circ Physiol 2002; 283: H733–H740.

    Article  CAS  Google Scholar 

  39. Zakheim RM, Molteni A, Mattioli L, Park M : Plasma angiotensin II levels in hypoxic and hypovolemic stress in unanesthetized rabbits. J Appl Physiol 1976; 41: 462–465.

    Article  CAS  Google Scholar 

  40. El-Sokkary GH, Khidr BM, Younes HA : Role of melatonin in reducing hypoxia-induced oxidative stress and morphological changes in the liver of male mice. Eur J Pharmacol 2006; 540: 107–114.

    Article  CAS  Google Scholar 

  41. Daugherty A, Manning MW, Cassis LA : Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E–deficient mice. J Clin Invest 2000; 105: 1605–1612.

    Article  CAS  Google Scholar 

  42. Fletcher EC, Orolinova N, Bader M : Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol 2002; 92: 627–633.

    Article  CAS  Google Scholar 

  43. Greenberg H, Ye X, Wilson D, et al: Chronic intermittent hypoxia activates nuclear factor-κB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 2006; 343: 591–596.

    Article  CAS  Google Scholar 

  44. Thomas CV, Coker ML, Zellner JL, et al: Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 1998; 97: 1708–1715.

    Article  CAS  Google Scholar 

  45. Reinhardt D, Sigusch HH, Henbe J, et al: Cardiac remodelling in end stage heart failure: upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart 2002; 88: 525–530.

    Article  CAS  Google Scholar 

  46. Vellaichamy E, Khurana ML, Fink J, Pandey KN : Involvement of the NF-κB/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J Biol Chem 2005; 280: 19230–19242.

    Article  CAS  Google Scholar 

  47. Sakata Y, Yamamoto K, Mano T, et al: Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation 2004; 109: 2143–2149.

    Article  CAS  Google Scholar 

  48. Li YY, McTiernan CF, Feldman AM : Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 2000; 46: 214–224.

    Article  CAS  Google Scholar 

  49. Maquart FX, Bellon G, Chaqour B, et al: In vivo stimulation of connective tissue accumulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ in rat experimental wounds. J Clin Invest 1993; 92: 2368–2376.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Osaka University of Pharmaceutical Sciences, Takatsuki, Japan

    Chika Yamashita, Naoko Tazawa, Chol-Jun Kwak, Daisuke Nakano & Yasuo Matsumura

  2. Department of Internal Medicine III, Osaka Medical College, Takatsuki, Japan

    Tetsuya Hayashi, Tatsuhiko Mori, Koichi Sohmiya & Yasushi Kitaura

  3. Department of Pathology, Osaka Medical College, Takatsuki, Japan

    Yoshikatsu Okada

Authors
  1. Chika Yamashita
    View author publications

    Search author on:PubMed Google Scholar

  2. Tetsuya Hayashi
    View author publications

    Search author on:PubMed Google Scholar

  3. Tatsuhiko Mori
    View author publications

    Search author on:PubMed Google Scholar

  4. Naoko Tazawa
    View author publications

    Search author on:PubMed Google Scholar

  5. Chol-Jun Kwak
    View author publications

    Search author on:PubMed Google Scholar

  6. Daisuke Nakano
    View author publications

    Search author on:PubMed Google Scholar

  7. Koichi Sohmiya
    View author publications

    Search author on:PubMed Google Scholar

  8. Yoshikatsu Okada
    View author publications

    Search author on:PubMed Google Scholar

  9. Yasushi Kitaura
    View author publications

    Search author on:PubMed Google Scholar

  10. Yasuo Matsumura
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Tetsuya Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, C., Hayashi, T., Mori, T. et al. Angiotensin II Receptor Blocker Reduces Oxidative Stress and Attenuates Hypoxia-Induced Left Ventricular Remodeling in Apolipoprotein E–Knockout Mice. Hypertens Res 30, 1219–1230 (2007). https://doi.org/10.1291/hypres.30.1219

Download citation

  • Received: 14 February 2007

  • Accepted: 29 June 2007

  • Issue date: 01 December 2007

  • DOI: https://doi.org/10.1291/hypres.30.1219

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • hypoxia
  • oxidative stress
  • apolipoprotein E
  • heart
  • angiotensin II receptor blocker

This article is cited by

  • Augmented O-GlcNAcylation exacerbates right ventricular dysfunction and remodeling via enhancement of hypertrophy, mitophagy, and fibrosis in mice exposed to long-term intermittent hypoxia

    • Shunichi Yokoe
    • Tetsuya Hayashi
    • Michio Asahi

    Hypertension Research (2023)

  • Effect of low-dose hydrocortisone and inhaled nitric oxide on inflammatory mediators and local pulmonary metalloproteinases activity in LPS-induced sepsis in piglets

    • Liliana Kiczak
    • Urszula Pasławska
    • Claes Frostell

    Scientific Reports (2023)

  • Augmented O-GlcNAcylation attenuates intermittent hypoxia-induced cardiac remodeling through the suppression of NFAT and NF-κB activities in mice

    • Takatoshi Nakagawa
    • Yuichi Furukawa
    • Michio Asahi

    Hypertension Research (2019)

  • Olmesartan reduces inflammatory biomarkers in patients with stable coronary artery disease undergoing percutaneous coronary intervention: results from the OLIVUS trial

    • Toru Miyoshi
    • Atsushi Hirohata
    • Hiroshi Ito

    Heart and Vessels (2014)

  • Celiprolol reduces oxidative stress and attenuates left ventricular remodeling induced by hypoxic stress in mice

    • Satoshi Nishioka
    • Toshitaka Yoshioka
    • Tetsuya Hayashi

    Hypertension Research (2013)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited