Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Tissue Inhibitor of Metalloproteinase-3 Deficiency Inhibits Blood Pressure Elevation and Myocardial Microvascular Remodeling Induced by Chronic Administration of Nω-Nitro-L-Arginine Methyl Ester in Mice
Download PDF
Download PDF
  • Original Article
  • Published: 01 June 2007

Tissue Inhibitor of Metalloproteinase-3 Deficiency Inhibits Blood Pressure Elevation and Myocardial Microvascular Remodeling Induced by Chronic Administration of Nω-Nitro-L-Arginine Methyl Ester in Mice

  • Masayoshi Higuchi1,
  • Osamu Yasuda1,
  • Hidenobu Kawamoto1,
  • Takamori Yotsui1,
  • Yoshichika Baba1,
  • Tohru Ozaki2,
  • Nobuyo Maeda3,
  • Keisuke Fukuo4,
  • Hiromi Rakugi1 &
  • …
  • Toshio Ogihara1 

Hypertension Research volume 30, pages 563–571 (2007)Cite this article

  • 1511 Accesses

  • Metrics details

Abstract

Hypertension is a major risk factor for cardiovascular disease. Thus, prevention of hypertension and consequent organ damage is important for reducing its incidence. In the present study, we examined the involvement of tissue inhibitor of metalloproteinase-3 (Timp-3) in Nω-nitro-L-arginine methyl ester (L-NAME)−induced hypertension and accompanying vascular remodeling in mice. L-NAME was orally administered to wild-type (WT) and Timp-3 knockout (KO) mice for 6 weeks, blood pressure was monitored, and histological changes in myocardial arteries were examined. After L-NAME administration, blood pressure was lower in Timp-3 KO mice than in WT mice. The coronary arteries of WT and Timp-3 KO mice were similar after L-NAME treatment and showed no differences compared to untreated control mice. However, cardiac microvessels differed histologically between WT and Timp-3 KO mice. Vascular walls were less thickened in Timp-3 KO than in WT mice, and fibrotic changes were significantly reduced in Timp-3 KO mice. Moreover, the L-NAME–induced production of reactive oxygen species in cardiac microvessels was lower in Timp-3 KO than in WT mice. These results indicate that Timp-3 plays an important role in L-NAME–induced hypertension and myocardial vascular remodeling. Our findings suggest that Timp-3 may be a novel therapeutic target for the treatment of hypertension and consequent organ damage.

Similar content being viewed by others

Expedient assessment of post-infarct remodeling by native cardiac magnetic resonance imaging in mice

Article Open access 02 June 2021

Characterizing myocardial edema and fibrosis in hypertensive crisis with cardiovascular magnetic resonance imaging

Article Open access 09 October 2024

Exercise training mitigates ER stress and UCP2 deficiency-associated coronary vascular dysfunction in atherosclerosis

Article Open access 29 July 2021

Article PDF

References

  1. Roberts WC : The hypertensive diseases. Evidence that systemic hypertension is a greater risk factor to the development of other cardiovascular diseases than previously suspected. Am J Med 1975; 59: 523–532.

    Article  CAS  PubMed  Google Scholar 

  2. Hollander W : Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol 1976; 38: 786–800.

    Article  CAS  PubMed  Google Scholar 

  3. Wang JG, Staessen JA, Franklin SS, Fagard R, Gueyffier F : Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension 2005; 45: 907–913.

    Article  CAS  PubMed  Google Scholar 

  4. Diamond JA, Phillips RA : Hypertensive heart disease. Hypertens Res 2005; 28: 191–202.

    Article  CAS  PubMed  Google Scholar 

  5. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G : Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987; 84: 9265–9269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ohashi Y, Kawashima S, Hirata K, et al: Hypotension and reduced nitric oxide–elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 1998; 102: 2061–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shesely EG, Maeda N, Kim HS, et al: Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 1996; 93: 13176–13181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang PL, Huang Z, Mashimo H, et al: Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377: 239–242.

    Article  CAS  PubMed  Google Scholar 

  9. Hyndman ME, Parsons HG, Verma S, et al: The T-786→C mutation in endothelial nitric oxide synthase is associated with hypertension. Hypertension 2002; 39: 919–922.

    Article  CAS  PubMed  Google Scholar 

  10. Ribeiro MO, Antunes E, de Nucci G, Lovisolo SM, Zatz R : Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 1992; 20: 298–303.

    Article  CAS  PubMed  Google Scholar 

  11. Baylis C, Mitruka B, Deng A : Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 1992; 90: 278–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luvara G, Pueyo ME, Philippe M, et al: Chronic blockade of NO synthase activity induces a proinflammatory phenotype in the arterial wall: prevention by angiotensin II antagonism. Arterioscler Thromb Vasc Biol 1998; 18: 1408–1416.

    Article  CAS  PubMed  Google Scholar 

  13. Numaguchi K, Egashira K, Takemoto M, et al: Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats. Hypertension 1995; 26: 957–962.

    Article  CAS  PubMed  Google Scholar 

  14. Suda O, Tsutsui M, Morishita T, et al: Long-term treatment with Nω-nitro-L-arginine methyl ester causes arteriosclerotic coronary lesions in endothelial nitric oxide synthase–deficient mice. Circulation 2002; 106: 1729–1735.

    Article  CAS  PubMed  Google Scholar 

  15. Pechanova O, Dobesova Z, Cejka J, Kunes J, Zicha J : Vasoactive systems in L-NAME hypertension: the role of inducible nitric oxide synthase. J Hypertens 2004; 22: 167–173.

    Article  CAS  PubMed  Google Scholar 

  16. Kanematsu Y, Tsuchiya K, Ohnishi H, et al: Effects of angiotensin II type 1 receptor blockade on the systemic blood nitric oxide dynamics in Nω-nitro-L-arginine methyl ester–treated rats. Hypertens Res 2006; 29: 369–374.

    Article  CAS  PubMed  Google Scholar 

  17. Nagase H, Woessner JF Jr : Matrix metalloproteinases. J Biol Chem 1999; 274: 21491–21494.

    Article  CAS  PubMed  Google Scholar 

  18. Brew K, Dinakarpandian D, Nagase H : Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000; 1477: 267–283.

    Article  CAS  PubMed  Google Scholar 

  19. Leco KJ, Khokha R, Pavloff N, Hawkes SP, Edwards DR : Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix–associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem 1994; 269: 9352–9360.

    CAS  PubMed  Google Scholar 

  20. Yu WH, Yu S, Meng Q, Brew K, Woessner JF Jr : TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem 2000; 275: 31226–31232.

    Article  CAS  PubMed  Google Scholar 

  21. Amour A, Slocombe PM, Webster A, et al: TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 1998; 435: 39–44.

    Article  CAS  PubMed  Google Scholar 

  22. Smookler DS, Mohammed FF, Kassiri Z, Duncan GS, Mak TW, Khokha R : Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J Immunol 2006; 176: 721–725.

    Article  CAS  PubMed  Google Scholar 

  23. Smith MR, Kung H, Durum SK, Colburn NH, Sun Y : TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine 1997; 9: 770–780.

    Article  CAS  PubMed  Google Scholar 

  24. Mannello F, Gazzanelli G : Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis 2001; 6: 479–482.

    Article  CAS  PubMed  Google Scholar 

  25. Qi JH, Ebrahem Q, Moore N, et al: A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 2003; 9: 407–415.

    Article  CAS  PubMed  Google Scholar 

  26. Fedak PW, Smookler DS, Kassiri Z, et al: TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 2004; 110: 2401–2409.

    Article  CAS  PubMed  Google Scholar 

  27. Leco KJ, Waterhouse P, Sanchez OH, et al: Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Invest 2001; 108: 817–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kawamoto H, Yasuda O, Suzuki T, et al: Tissue inhibitor of metalloproteinase-3 plays important roles in the kidney following unilateral ureteral obstruction. Hypertens Res 2006; 29: 285–294.

    Article  CAS  PubMed  Google Scholar 

  29. Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U : Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet 1994; 8: 352–356.

    Article  CAS  PubMed  Google Scholar 

  30. Yeow KM, Kishnani NS, Hutton M, Hawkes SP, Murphy G, Edwards DR : Sorsby's fundus dystrophy tissue inhibitor of metalloproteinases-3 (TIMP-3) mutants have unimpaired matrix metalloproteinase inhibitory activities, but affect cell adhesion to the extracellular matrix. Matrix Biol 2002; 21: 75–88.

    Article  CAS  PubMed  Google Scholar 

  31. Soboleva G, Geis B, Schrewe H, Weber BH : Sorsby fundus dystrophy mutation Timp3 (S156C) affects the morphological and biochemical phenotype but not metalloproteinase homeostasis. J Cell Physiol 2003; 197: 149–156.

    Article  CAS  PubMed  Google Scholar 

  32. Fabunmi RP, Sukhova GK, Sugiyama S, Libby P : Expression of tissue inhibitor of metalloproteinases-3 in human atheroma and regulation in lesion-associated cells: a potential protective mechanism in plaque stability. Circ Res 1998; 83: 270–278.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson TW, Wu YX, Herdeg C, et al: Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler Thromb Vasc Biol 2005; 25: 754–759.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu XY, Daghini E, Chade AR, et al: Role of oxidative stress in remodeling of the myocardial microcirculation in hypertension. Arterioscler Thromb Vasc Biol 2006; 26: 1746–1752.

    Article  CAS  PubMed  Google Scholar 

  35. Kaikita K, Fogo AB, Ma L, Schoenhard JA, Brown NJ, Vaughan DE : Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition. Circulation 2001; 104: 839–844.

    Article  CAS  PubMed  Google Scholar 

  36. Carmeliet P, Moons L, Lijnen R, et al: Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 1997; 17: 439–444.

    Article  CAS  PubMed  Google Scholar 

  37. Davis GE, Pintar Allen KA, Salazar R, Maxwell SA : Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell–mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci 2001; 114: 917–930.

    CAS  PubMed  Google Scholar 

  38. Rauchova H, Pechanova O, Kunes J, Vokurkova M, Dobesova Z, Zicha J : Chronic N-acetylcysteine administration prevents development of hypertension in Nω-nitro-L-arginine methyl ester–treated rats: the role of reactive oxygen species. Hypertens Res 2005; 28: 475–482.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Japan

    Masayoshi Higuchi, Osamu Yasuda, Hidenobu Kawamoto, Takamori Yotsui, Yoshichika Baba, Hiromi Rakugi & Toshio Ogihara

  2. Astellas Pharma Inc., Osaka, Japan

    Tohru Ozaki

  3. Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA

    Nobuyo Maeda

  4. Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Mukogawa, Japan

    Keisuke Fukuo

Authors
  1. Masayoshi Higuchi
    View author publications

    Search author on:PubMed Google Scholar

  2. Osamu Yasuda
    View author publications

    Search author on:PubMed Google Scholar

  3. Hidenobu Kawamoto
    View author publications

    Search author on:PubMed Google Scholar

  4. Takamori Yotsui
    View author publications

    Search author on:PubMed Google Scholar

  5. Yoshichika Baba
    View author publications

    Search author on:PubMed Google Scholar

  6. Tohru Ozaki
    View author publications

    Search author on:PubMed Google Scholar

  7. Nobuyo Maeda
    View author publications

    Search author on:PubMed Google Scholar

  8. Keisuke Fukuo
    View author publications

    Search author on:PubMed Google Scholar

  9. Hiromi Rakugi
    View author publications

    Search author on:PubMed Google Scholar

  10. Toshio Ogihara
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Osamu Yasuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, M., Yasuda, O., Kawamoto, H. et al. Tissue Inhibitor of Metalloproteinase-3 Deficiency Inhibits Blood Pressure Elevation and Myocardial Microvascular Remodeling Induced by Chronic Administration of Nω-Nitro-L-Arginine Methyl Ester in Mice. Hypertens Res 30, 563–571 (2007). https://doi.org/10.1291/hypres.30.563

Download citation

  • Received: 16 January 2007

  • Accepted: 25 January 2007

  • Issue date: 01 June 2007

  • DOI: https://doi.org/10.1291/hypres.30.563

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • tissue inhibitor of metalloproteinase-3
  • Nω-nitro-L-arginine methyl ester
  • hypertension
  • vascular remodeling

This article is cited by

  • Extracellular matrix collagen biomarkers levels in patients with chronic thromboembolic pulmonary hypertension

    • Wenyi Pang
    • Zhu Zhang
    • Chen Wang

    Journal of Thrombosis and Thrombolysis (2021)

  • Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury

    • Scott M. Moore
    • Hua Zhang
    • James E. Faber

    Angiogenesis (2015)

  • Timp-3 deficiency impairs cognitive function in mice

    • Yoshichika Baba
    • Osamu Yasuda
    • Hiromi Rakugi

    Laboratory Investigation (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited