Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Is Cardiac Hypertrophy in Spontaneously Hypertensive Rats the Cause or the Consequence of Oxidative Stress?
Download PDF
Download PDF
  • Original Article
  • Published: 01 July 2008

Is Cardiac Hypertrophy in Spontaneously Hypertensive Rats the Cause or the Consequence of Oxidative Stress?

  • María Cecilia Álvarez1,
  • Claudia Caldiz1,
  • Juliana C Fantinelli1,
  • Carolina D Garciarena1,
  • Gloria M Console2,
  • Gladys E Chiappe De Cingolani1 &
  • …
  • Susana M Mosca1 

Hypertension Research volume 31, pages 1465–1476 (2008)Cite this article

  • 2571 Accesses

  • Metrics details

Abstract

The aim of this work was to assess the possible correlation between oxidative damage and the development of cardiac hypertrophy in heart tissue from young (40-d-old) and older (4-, 11- and 19-month-old) spontaneously hypertensive rats (SHR) in comparison with age-matched Wistar (W) rats. To this end, levels of thiobarbituric acid reactive substances (TBARS), nitrotyrosine contents, NAD(P)H oxidase activity, superoxide production, and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were determined. Compared to age-matched normotensive rats, SHR showed a significant increase in systolic blood pressure from 40 d of age and left ventricular hypertrophy (LVH) was significantly evident from 4 months of age. W rats (11- and 19-month-old) also showed an increase in LVH with aging. TBARS and nitrotyrosine levels were similar in young rats from both strains and were significantly increased with age in both strains, with the values in SHR being significantly higher than those in age-matched W rats. NAD(P)H activity was similar in young SHR and W rats, whereas it was higher in aged SHR compared with age-matched W rats. Compared to W rats, superoxide production was higher in aged SHR, and was abolished by NAD(P)H inhibition with apocynin. CAT activity was increased in the hearts of 4-month-old SHR compared to age-matched W rats and was decreased in the hearts of the oldest SHR compared to the oldest W rats. SOD and GPx activities decreased in both rat strains with aging. Moreover,an increase in collagen deposition with aging was evident in both rat strains. Taken together, these data showed that aged SHR exhibited higher cardiac hypertrophy and oxidative damage compared to W rats, indicating that the two undesirable effects are associated. That is, oxidative stress appears to be a cause and/or consequence of hypertrophy development in this animal model.

Similar content being viewed by others

Effect of the traditional Chinese medicine Pinggan-Qianyang decoction on SIRT1–PTEN signaling in vascular aging in spontaneously hypertensive rats

Article Open access 29 June 2021

The interface of aging and salt in driving salt-sensitive hypertension: a comparative study in aged and young rats

Article Open access 24 January 2026

Sex- and age-dependent susceptibility to ventricular arrhythmias in the rat heart ex vivo

Article Open access 11 February 2024

Article PDF

References

  1. Trippodo NC, Frohlich ED : Similarities of genetic (spontaneous) hypertension: man and rat. Circ Res 1981; 48: 309–319.

    Article  CAS  PubMed  Google Scholar 

  2. Shimamoto N, Goto N, Tanabe M, Imamoto T, Fujiwara S, Hirata M : Myocardial energy metabolism in the hypertrophied hearts of spontaneously hypertensive rats. Basic Res Cardiol 1982; 77: 359–367.

    Article  CAS  PubMed  Google Scholar 

  3. Yucel D, Aydogdu S, Cehreli S, et al: Increased oxidative stress in dilated cardiomyopathic heart failure. Clin Chem 1998; 44: 148–154.

    CAS  PubMed  Google Scholar 

  4. Lassègue B, Griendling KK : Reactive oxygen species in hypertension. Am J Hypertens 2004; 17: 852–860.

    Article  PubMed  Google Scholar 

  5. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM : Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002; 105: 293–296.

    Article  CAS  PubMed  Google Scholar 

  6. Griendling KK, Sorescu D, Ushio-Fukai M : NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494–501.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB : Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 2002; 282: C926–C934.

    Article  CAS  PubMed  Google Scholar 

  8. Ito H, Torii M, Suzuki T : Decreased superoxide dismutase activity and increased superoxide anion production in cardiac hypertrophy of spontaneously hypertensive rats. Clin Exp Hypertens 1995; 17: 803–816.

    Article  CAS  PubMed  Google Scholar 

  9. Newaz MA, Nawal NN : Effect of gamma-tocotrienol on blood pressure, lipid peroxidation and total antioxidant status in spontaneously hypertensive rats (SHR). Clin Exp Hypertens 1999; 21: 1297–1313.

    Article  CAS  PubMed  Google Scholar 

  10. Csonka C, Pataki T, Kovacs P, et al: Effects of oxidative stress on the expression of antioxidative defense enzymes in spontaneously hypertensive rat hearts. Free Radic Biol Med 2000; 29: 612–619.

    Article  CAS  PubMed  Google Scholar 

  11. Gómez-Amores L, Mate A, Revilla E, Santa-Maria C, VÁzquez CM : Antioxidant activity of propionyl-L-carnitine in liver and heart of spontaneously hypertensive rats. Life Sci 2006; 78: 1945–1952.

    Article  PubMed  Google Scholar 

  12. Girard A, Madani S, El Boustani ES Belleville J, Prosa J : Changes in lipid metabolism and antioxidant defense status in spontaneously hypertensive rats and Wistar rats fed a diet enriched with fructose and saturated fatty acids. Nutrition 2005; 21: 240–248.

    Article  CAS  PubMed  Google Scholar 

  13. Beal MF : Oxidatively modified proteins in aging and disease. Free Radic Biol Med 2002; 32: 797–803.

    Article  CAS  PubMed  Google Scholar 

  14. Nadruz W Jr, Lagosta VJ, Moreno H Jr, Coelho OR, Franchini KG : Simvastatin prevents load-induced protein tyrosine nitration in overloaded hearts. Hypertension 2004; 43: 1060–1066.

    Article  CAS  PubMed  Google Scholar 

  15. Camilión de Hurtado MC, Portiansky EL, Pérez NG, Rebolledo OR, Cingolani HE : Regression of cardiomyocyte hypertrophy in SHR following chronic inhibition of the Na+/H+ exchanger. Cardiovasc Res 2002; 53: 862–868.

    Article  Google Scholar 

  16. Yin FC, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG : Use of tibial length to quantify cardiac hypertrophy:application in the aging rat. Am J Physiol 1982; 243: H941–H947.

    CAS  PubMed  Google Scholar 

  17. Bradford MM : A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  18. Buege A, Aust SD : Microsomal lipid peroxidation. Methods Enzymol 1978; 52: 302–310.

    Article  CAS  PubMed  Google Scholar 

  19. Halliwell B : What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett 1997; 411: 157–160.

    Article  CAS  PubMed  Google Scholar 

  20. Souza HP, Liu X, Samouilov A, Kuppusamy P, Laurindo FR, Zweier JL : Quantitation of superoxide generation and substrate utilization by vascular NAD(P)H oxidase. Am J Physiol Heart Circ Physiol 2002; 282: H466–H474.

    Article  CAS  PubMed  Google Scholar 

  21. Khan SA, Lee K, Minhas KM, et al: Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A 2004; 101: 15944–15948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beauchamp C, Fridovich I : Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971; 44: 276–287.

    Article  CAS  PubMed  Google Scholar 

  23. Aebi H : Catalase in vitro. Methods Enzymol 1984; 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence RA, Burk RF : Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 1976; 71: 952–958.

    Article  CAS  PubMed  Google Scholar 

  25. Dikalov S, Griendling KK, Harrison DG : Measurement of reactive oxygen species in cardiovascular studies. Hypertension 2007; 49: 717–727.

    Article  CAS  PubMed  Google Scholar 

  26. Fukagawa NK : Aging: is oxidative stress a marker or is it causal? Proc Soc Exp Biol Med 1999; 222: 293–298.

    Article  CAS  PubMed  Google Scholar 

  27. Dobrian AD, Schriver SD, Lynch T, Prewitt RL : Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity. Am J Physiol Renal Physiol 2003; 285: F619–F628.

    Article  CAS  PubMed  Google Scholar 

  28. Vaziri ND, Sica DA : Lead-induced hypertension: role of oxidative stress. Curr Hypertens Rep 2004; 6: 314–320.

    Article  PubMed  Google Scholar 

  29. Swei A, Lacy F, DeLano FA, Schmid-Schonbein GW : Oxidative stress in the Dahl hypertensive rat. Hypertension 1997; 30: 1628–1633.

    Article  CAS  PubMed  Google Scholar 

  30. Griendling KK, Ushio-Fukai M : Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 2000; 91: 21–27.

    Article  CAS  PubMed  Google Scholar 

  31. Cocco T, Sgobbo P, Clemente M, et al: Tissue-specific changes of mitochondrial functions in aged rats: effect of a long-term dietary treatment with N-acetylcysteine. Free Radic Biol Med 2005; 38: 796–805.

    Article  CAS  PubMed  Google Scholar 

  32. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C : Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 2005; 19: 419–421.

    Article  CAS  PubMed  Google Scholar 

  33. Muscari C, Caldarera CM, Guarnieri C : Age-dependent production of mitochondrial hydrogen peroxide, lipid peroxides and fluorescent pigments in the rat heart. Basic Res Cardiol 1990; 85: 172–178.

    Article  CAS  PubMed  Google Scholar 

  34. Navarro-Arévalo A, Canavate C, SÁnchez-del-Pino MJ : Myocardial and skeletal muscle aging and changes in oxidative stress in relationship to rigorous exercise training. Mech Ageing Dev 1999; 108: 207–217.

    Article  PubMed  Google Scholar 

  35. Cand F, Verdetti J : Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rats. Free Radic Biol Med 1989; 7: 59–63.

    Article  CAS  PubMed  Google Scholar 

  36. Loscalzo J, Welch G : Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis 1995; 38: 87–104.

    Article  CAS  PubMed  Google Scholar 

  37. Mac Millan-Crow LA, Cruthirds DL : Invited review: manganese superoxide dismutase in disease. Free Radic Res 2001; 34: 325–336.

    Article  CAS  Google Scholar 

  38. Alvarez B, Demicheli V, Duran R, et al: Inactivation of human Cu, Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical. Free Radic Biol Med 2004; 37: 813–822.

    Article  CAS  PubMed  Google Scholar 

  39. McIntyre M, Bohr DF, Dominiczak AF : Endothelial function in hypertension. The role of superoxide anion. Hypertension 1999; 34: 539–545.

    Article  CAS  PubMed  Google Scholar 

  40. Zalba G, San José G, Moreno MU, et al: Oxidative stress in arterial hypertension. Role of NAD(P)H oxidase, Hypertension 2001; 38: 1395–1399.

    Article  CAS  PubMed  Google Scholar 

  41. Vaziri ND, Ni Z, Tarnavsky-Hobbs DL : Effect of antioxidant therapy on blood pressure and nitric oxide synthase expression in hypertensive rats. Hypertension 2000; 36: 957–964.

    Article  CAS  PubMed  Google Scholar 

  42. Umemoto S, Tanaka M, Kawahara S, et al: Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27: 877–885.

    Article  CAS  PubMed  Google Scholar 

  43. Hirooka Y, Kimura Y, Nozoe M, Sagara Y, Ito K, Sunagawa K : Amlodipine-induced reduction of oxidative stress in the brain is associated with sympatho-inhibitory effects in stroke-prone spontaneously hypertensive rats. Hypertens Res 2006; 29: 49–56.

    Article  CAS  PubMed  Google Scholar 

  44. Takai S, Kirimura K, Jin D, et al: Significance of angiotensin II receptor blocker lipophilicities and their protective effect against vascular remodeling. Hypertens Res 2005; 28: 593–600.

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka M, Umemoto S, Kawahara S, et al: Angiotensin II type 1 receptor antagonist and angiotensin-converting enzyme inhibitor altered the activation of Cu/Zn-containing superoxide dismutase in the heart of stroke-prone spontaneously hypertensive rats. Hypertens Res 2005; 28: 67–77.

    Article  CAS  PubMed  Google Scholar 

  46. Zieman SJ, Gerstenblith G, Lakatta EG, et al: Upregulation of the nitric oxide-cGMP pathway in aged myocardium: physiological response to L-arginine. Circ Res 2001; 88: 97–102.

    Article  CAS  PubMed  Google Scholar 

  47. Llorens S, Salazar FJ, Nava E : Assessment of the nitric oxide system in the heart, aorta and kidney of aged Wistar- Kyoto and spontaneously hypertensive rats. J Hypertens 2005; 23: 1507–1514.

    Article  CAS  PubMed  Google Scholar 

  48. Beckman KB, Ames BN : The free radical theory of aging matures. Physiol Rev 1998; 78: 547–581.

    Article  CAS  PubMed  Google Scholar 

  49. Harman D : Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300.

    Article  CAS  PubMed  Google Scholar 

  50. Harman D : Free radicals in aging. Mol Cell Biochem 1988; 84: 155–161.

    Article  CAS  PubMed  Google Scholar 

  51. Berry CE, Hare JM : Xanthine oxidoreductase in the cardiovascular system: molecular mechanisms and pathophysiologic implications. J Physiol 2004; 555: 589–606.

    Article  CAS  PubMed  Google Scholar 

  52. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S : Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols-implications for uncoupling endothelial nitricoxide synthase. J Biol Chem 2003; 278: 22546–22554.

    Article  CAS  PubMed  Google Scholar 

  53. Landmesser U, Dikalov S, Price SR, et al: Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003; 111: 1201–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM : Activation of NAD(P)H oxidase during progression of cardiac hypertrophy to failure. Hypertension 2002; 40: 477–484.

    Article  CAS  PubMed  Google Scholar 

  55. Miyagawa K, Ohashi M, Yamashita S, et al: Increased oxidative stress impairs endothelial modulation of contractions in arteries from spontaneously hypertensive rats. J Hypertens 2007; 25: 415–421.

    Article  CAS  PubMed  Google Scholar 

  56. Meyer JW, Schmitt ME : A central role for the endothelial NADPH oxidase in atherosclerosis. FEBS Lett 2000; 472: 1–4.

    Article  CAS  PubMed  Google Scholar 

  57. Hamilton CA, Brosnan MJ, McIntyre M, Graham D, Dominiczak AF : Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 2001; 37: 529–534.

    Article  CAS  PubMed  Google Scholar 

  58. Park YM, Park MY, Suh YL, Park JB : NAD(P)H oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats. Biochem Biophys Res Commun 2004; 313: 812–817.

    Article  CAS  PubMed  Google Scholar 

  59. Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J : AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension 2003; 42: 206–212.

    Article  CAS  PubMed  Google Scholar 

  60. Yamamoto E, Lai ZF, Yamashita T, et al: Enhancement of cardiac oxidative stress by tachycardia and its critical role in cardiac hypertrophy and fibrosis. J Hypertens 2006; 24: 2057–2069.

    Article  CAS  PubMed  Google Scholar 

  61. Ulker S, McMaster D, McKeown PP, Bayraktutan U : Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovasc Res 2003; 59: 488–500.

    Article  CAS  PubMed  Google Scholar 

  62. Robin S, Courderot-Masuyer C, Nicod L, Jacqueson A, Richert L, Berthelot A : Opposite effect of methionine-supplemented diet, a model of hyperhomocysteinemia, on plasma and liver antioxidant status in normotensive and spontaneously hypertensive rats. J Nutr Biochem 2004; 15: 80–89.

    Article  CAS  PubMed  Google Scholar 

  63. Wilson DO, Johnson P : Exercise modulates antioxidant enzyme gene expression in rat myocardium and liver. J Appl Physiol 2000; 88: 1791–1796.

    Article  CAS  PubMed  Google Scholar 

  64. Igarashi R, Hoshino J, Takenaga M, et al: Lecithinization of superoxide dismutase potentiates its protective effect against Forssman antiserum-induced elevation in guinea pig airway resistance. J Pharmacol Exp Ther 1992; 262: 1214–1219.

    CAS  PubMed  Google Scholar 

  65. De Godoy MA, Rattan S : Angiotensin-converting enzyme and angiotensin II receptor subtype 1 inhibitors restitute hypertensive internal anal sphincter in the spontaneously hypertensive rats. J Pharmacol Exp Ther 2006; 318: 725–734.

    Article  CAS  PubMed  Google Scholar 

  66. Eghbali M, Eghbali M, Robinson TF, Seifter S, Blumenfeld OO : Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res 1989; 23: 723–729.

    Article  CAS  PubMed  Google Scholar 

  67. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH : Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 1995; 91: 161–170.

    Article  CAS  PubMed  Google Scholar 

  68. Engelmann GL, Vitullo JC, Gerrity RG : Morphometric analysis of cardiac hypertrophy during development, maturation, and senescence in spontaneously hypertensive rats. Circ Res 1987; 60: 487–494.

    Article  CAS  PubMed  Google Scholar 

  69. Rahman M, Nishiyama A, Guo P, et al: Effects of adrenomedullin on cardiac oxidative stress and collagen accumulation in aldosterone-dependent malignant hypertensive rats. J Pharmacol Exp Ther 2006; 318: 1323–1329.

    Article  CAS  PubMed  Google Scholar 

  70. Marian AJ, Senthil V, Chen SN, Lombardi R : Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol 2006; 47: 827–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I : Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 2003; 5: 789–794.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center of Cardiovascular Research, National University of La Plata, Buenos Aires, Argentina

    María Cecilia Álvarez, Claudia Caldiz, Juliana C Fantinelli, Carolina D Garciarena, Gladys E Chiappe De Cingolani & Susana M Mosca

  2. Faculty of Medical Sciences, National University of La Plata, Buenos Aires, Argentina

    Gloria M Console

Authors
  1. María Cecilia Álvarez
    View author publications

    Search author on:PubMed Google Scholar

  2. Claudia Caldiz
    View author publications

    Search author on:PubMed Google Scholar

  3. Juliana C Fantinelli
    View author publications

    Search author on:PubMed Google Scholar

  4. Carolina D Garciarena
    View author publications

    Search author on:PubMed Google Scholar

  5. Gloria M Console
    View author publications

    Search author on:PubMed Google Scholar

  6. Gladys E Chiappe De Cingolani
    View author publications

    Search author on:PubMed Google Scholar

  7. Susana M Mosca
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Susana M Mosca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, M., Caldiz, C., Fantinelli, J. et al. Is Cardiac Hypertrophy in Spontaneously Hypertensive Rats the Cause or the Consequence of Oxidative Stress?. Hypertens Res 31, 1465–1476 (2008). https://doi.org/10.1291/hypres.31.1465

Download citation

  • Received: 29 January 2007

  • Accepted: 27 March 2008

  • Issue date: 01 July 2008

  • DOI: https://doi.org/10.1291/hypres.31.1465

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • antioxidant enzymes
  • hypertrophy
  • thiobarbituric acid reactive substances
  • nitrotyrosine
  • superoxide production

This article is cited by

  • Exercise-induced cardiac mitochondrial reorganization and enhancement in spontaneously hypertensive rats

    • Joshua Godoy Coto
    • Erica V. Pereyra
    • Irene L. Ennis

    Pflügers Archiv - European Journal of Physiology (2024)

  • Antihypertensive, antioxidant, and renal protective impact of integrated GJD with captopril in spontaneously hypertensive rats

    • Shadi A. D. Mohammed
    • Hanxing Liu
    • Shumin Liu

    Scientific Reports (2023)

  • Proteomic identification of the proteins related to cigarette smoke-induced cardiac hypertrophy in spontaneously hypertensive rats

    • Yuki Kitamura
    • Nathan Mise
    • Sahoko Ichihara

    Scientific Reports (2020)

  • Doxorubicin-induced cardiotoxicity is suppressed by estrous-staged treatment and exogenous 17β-estradiol in female tumor-bearing spontaneously hypertensive rats

    • Kaytee L. Pokrzywinski
    • Thomas G. Biel
    • V. Ashutosh Rao

    Biology of Sex Differences (2018)

  • A Long-Term and Slow-Releasing Hydrogen Sulfide Donor Protects against Myocardial Ischemia/Reperfusion Injury

    • Xiaotian Sun
    • Wenshuo Wang
    • Yiqing Wang

    Scientific Reports (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited