Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Aldosterone Enhances Ligand-Stimulated Nitric Oxide Production in Endothelial Cells
Download PDF
Download PDF
  • Original Article
  • Published: 01 September 2008

Aldosterone Enhances Ligand-Stimulated Nitric Oxide Production in Endothelial Cells

  • Akiko Mutoh1,
  • Masashi Isshiki1 &
  • Toshiro Fujita1 

Hypertension Research volume 31, pages 1811–1820 (2008)Cite this article

  • 2328 Accesses

  • Metrics details

Abstract

Chronic and acute actions of aldosterone have been shown recently to directly affect the cardiovascular system. However, it is unclear whether the acute effects of aldosterone on vasculature are constrictive or dilatory. Here, to clarify the nongenomic effects of aldosterone on endothelial function, we examined the effects of aldosterone on nitric oxide (NO) production in cultured endothelial cells (ECs) and on vascular tone. The intracellular NO production of bovine aortic ECs loaded with DAF-2 was determined using confocal microscopy. Accumulated NO in the culture medium was quantified by a microplate reader using membrane-impermeable DAF-2. Phosphorylation of endothelial NO synthase (eNOS) at Ser1179 was assessed by Western blotting. Changes in intracellular Ca2+ ([Ca2+]i) were determined by confocal microscopy in ECs doubly loaded with fluo-4 and Fura Red. The effects of aldosterone, acetylcholine (ACh), and other signaling molecules on the tension of phenylephrine (PE)-contracted aortas of Sprague-Dawley rats were examined in an ex vivo organ bath chamber system. Short-term pre-exposure to aldosterone (1 × 10−7 mol/L) enhanced ATP-induced NO production in ECs with increased phosphorylation of eNOS at Ser1179. These effects were blocked by eplerenone, a mineralocorticoid receptor (MR) antagonist, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Notably, aldosterone alone did not affect ATP-induced [Ca2+]i changes or the Ser1179 phosphorylation. Similarly, aldosterone (1 × 10−8 to 1 × 10−7 mol/L) did not affect the tone of rat aortas precontracted by PE, but enhanced ACh-induced vasorelaxation, which was again reversed by eplerenone or LY29400. In contrast, sodium nitroprusside–induced vasorelaxation in endothelium-denuded aortas was not affected by aldosterone. Thus, aldosterone acutely enhances ligand-mediated endothelial NO production by eplerenone-sensitive mechanisms involving a PI3K that may synergize Ca2+-dependent eNOS phosphorylation at Ser1179.

Similar content being viewed by others

2′–5′ oligoadenylate synthetase‑like 1 (OASL1) protects against atherosclerosis by maintaining endothelial nitric oxide synthase mRNA stability

Article Open access 04 November 2022

Exercise training mitigates ER stress and UCP2 deficiency-associated coronary vascular dysfunction in atherosclerosis

Article Open access 29 July 2021

Novel indolic AMPK modulators induce vasodilatation through activation of the AMPK–eNOS–NO pathway

Article Open access 10 March 2022

Article PDF

References

  1. Pitt B, Zannad F, Remme WJ, et al: The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999; 341: 709–717.

    Article  CAS  PubMed  Google Scholar 

  2. Farquharson CA, Struthers AD : Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000; 101: 594–597.

    Article  CAS  PubMed  Google Scholar 

  3. Pitt B, Remme W, Zannad F, et al: Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348: 1309–1321.

    Article  CAS  PubMed  Google Scholar 

  4. Losel RM, Falkenstein E, Feuring M, et al: Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 2003; 83: 965–1016.

    Article  PubMed  Google Scholar 

  5. Takeda Y : Pleiotropic actions of aldosterone and the effects of eplerenone, a selective mineralocorticoid receptor antagonist. Hypertens Res 2004; 27: 781–789.

    Article  CAS  PubMed  Google Scholar 

  6. Gekle M, Golenhofen N, Oberleithner H, et al: Rapid activation of Na+/H+ exchange by aldosterone in renal epithelial cells requires Ca2+ and stimulation of a plasma membrane proton conductance. Proc Natl Acad Sci U S A 1996; 93: 10500–10504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gekle M, Silbernagl S, Wunsch S : Non-genomic action of the mineralocorticoid aldosterone on cytosolic sodium in cultured kidney cells. J Physiol 1998; 511: 255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mihailidou AS, Buhagiar KA, Rasmussen HH : Na+ influx and Na+-K+ pump activation during short-term exposure of cardiac myocytes to aldosterone. Am J Physiol 1998; 274: C175–C181.

    Article  CAS  PubMed  Google Scholar 

  9. Liu SL, Schmuck S, Chorazcyzewski JZ, et al: Aldosterone regulates vascular reactivity: short-term effects mediated by phosphatidylinositol 3-kinase–dependent nitric oxide synthase activation. Circulation 2003; 108: 2400–2406.

    Article  CAS  PubMed  Google Scholar 

  10. Schneider M, Ulsenheimer A, Christ M, et al: Nongenomic effects of aldosterone on intracellular calcium in porcine endothelial cells. Am J Physiol 1997; 272: E616–E620.

    CAS  PubMed  Google Scholar 

  11. Alzamora R, Michea L, Marusic ET : Role of 11betahydroxysteroid dehydrogenase in nongenomic aldosterone effects in human arteries. Hypertension 2000; 35: 1099–1104.

    Article  CAS  PubMed  Google Scholar 

  12. Schiffrin EL : Effects of aldosterone on the vasculature. Hypertension 2006; 47: 312–318.

    Article  CAS  PubMed  Google Scholar 

  13. Skott O, Uhrenholt TR, Schjerning J, et al: Rapid actions of aldosterone in vascular health and disease—friend or foe? Pharmacol Ther 2006; 111: 495–507.

    Article  CAS  PubMed  Google Scholar 

  14. Wehling M, Neylon CB, Fullerton M, et al: Nongenomic effects of aldosterone on intracellular Ca2+ in vascular smooth muscle cells. Circ Res 1995; 76: 973–979.

    Article  CAS  PubMed  Google Scholar 

  15. Haseroth K, Gerdes D, Berger S, et al: Rapid nongenomic effects of aldosterone in mineralocorticoid-receptor–knockout mice. Biochem Biophys Res Commun 1999; 266: 257–261.

    Article  CAS  PubMed  Google Scholar 

  16. Michea L, Delpiano AM, Hitschfeld C, et al: Eplerenone blocks nongenomic effects of aldosterone on the Na+/H+ exchanger, intracellular Ca2+ levels, and vasoconstriction in mesenteric resistance vessels. Endocrinology 2005; 146: 973–980.

    Article  CAS  PubMed  Google Scholar 

  17. Arima S, Kohagura K, Xu HL, et al: Nongenomic vascular action of aldosterone in the glomerular microcirculation. J Am Soc Nephrol 2003; 14: 2255–2263.

    Article  CAS  PubMed  Google Scholar 

  18. Uhrenholt TR, Schjerning J, Hansen PB, et al: Rapid inhibition of vasoconstriction in renal afferent arterioles by aldosterone. Circ Res 2003; 93: 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  19. Romagni P, Rossi F, Guerrini L, et al: Aldosterone induces contraction of the resistance arteries in man. Atherosclerosis 2003; 166: 345–349.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt BM, Oehmer S, Delles C, et al: Rapid nongenomic effects of aldosterone on human forearm vasculature. Hypertension 2003; 42: 156–160.

    Article  CAS  PubMed  Google Scholar 

  21. Isshiki M, Mutoh A, Fujita T : Subcortical Ca2+ waves sneaking under the plasma membrane in endothelial cells. Circ Res 2004; 95: e11–e21.

    Article  CAS  PubMed  Google Scholar 

  22. Wehling M, Ulsenheimer A, Schneider M, et al: Rapid effects of aldosterone on free intracellular calcium in vascular smooth muscle and endothelial cells: subcellular localization of calcium elevations by single cell imaging. Biochem Biophys Res Commun 1994; 204: 475–481.

    Article  CAS  PubMed  Google Scholar 

  23. Bredt DS, Hwang PM, Glatt CE, et al: Cloned and expressed nitric oxide synthase structurally resembles cytochrome P–450 reductase. Nature 1991; 351: 714–718.

    Article  CAS  PubMed  Google Scholar 

  24. Fleming I, Fisslthaler B, Dimmeler S, et al: Phosphorylation of Thr495 regulates Ca2+/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 2001; 88: E68–E75.

    CAS  PubMed  Google Scholar 

  25. Hiyoshi H, Yayama K, Takano M, et al: Stimulation of cyclic GMP production via AT2 and B2 receptors in the pressure-overloaded aorta after banding. Hypertension 2004; 43: 1258–1263.

    Article  CAS  PubMed  Google Scholar 

  26. Yayama K, Hiyoshi H, Imazu D, et al: Angiotensin II stimulates endothelial NO synthase phosphorylation in thoracic aorta of mice with abdominal aortic banding via type 2 receptor. Hypertension 2006; 48: 958–964.

    Article  CAS  PubMed  Google Scholar 

  27. Sampaio WO, Souza dos Santos RA, Faria-Silva R, et al: Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 2007; 49: 185–192.

    Article  CAS  PubMed  Google Scholar 

  28. Motley ED, Eguchi K, Patterson MM, et al: Mechanism of endothelial nitric oxide synthase phosphorylation and activation by thrombin. Hypertension 2007; 49: 577–583.

    Article  CAS  PubMed  Google Scholar 

  29. Nagata D, Takahashi M, Sawai K, et al: Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension 2006; 48: 165–171.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Nephrology and Endocrinology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

    Akiko Mutoh, Masashi Isshiki & Toshiro Fujita

Authors
  1. Akiko Mutoh
    View author publications

    Search author on:PubMed Google Scholar

  2. Masashi Isshiki
    View author publications

    Search author on:PubMed Google Scholar

  3. Toshiro Fujita
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Masashi Isshiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutoh, A., Isshiki, M. & Fujita, T. Aldosterone Enhances Ligand-Stimulated Nitric Oxide Production in Endothelial Cells. Hypertens Res 31, 1811–1820 (2008). https://doi.org/10.1291/hypres.31.1811

Download citation

  • Received: 25 April 2008

  • Accepted: 02 July 2008

  • Issue date: 01 September 2008

  • DOI: https://doi.org/10.1291/hypres.31.1811

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • nongenomic action
  • endothelium
  • mineralocorticoid receptor
  • phosphoinositide 3-kinase
  • eplerenone

This article is cited by

  • Stromal interaction molecule 1 modulates blood pressure via NO production in vascular endothelial cells

    • Mitsuhiro Nishimoto
    • Risuke Mizuno
    • Masashi Isshiki

    Hypertension Research (2018)

  • Activation of Sonic hedgehog signaling in ventricular cardiomyocytes exerts cardioprotection against ischemia reperfusion injuries

    • Ludovit Paulis
    • Jeremy Fauconnier
    • Alain Lacampagne

    Scientific Reports (2015)

  • Oxidative Stress and Organ Damages

    • Sayoko Ogura
    • Tatsuo Shimosawa

    Current Hypertension Reports (2014)

  • Aldosterone: effects on the kidney and cardiovascular system

    • Marie Briet
    • Ernesto L. Schiffrin

    Nature Reviews Nephrology (2010)

  • Role of nitric oxide on purinergic signalling in the cochlea

    • Narinobu Harada

    Purinergic Signalling (2010)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited