Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Effects of Pioglitazone on Nitric Oxide Bioavailability Measured Using a Catheter-Type Nitric Oxide Sensor in Angiotensin II−Infusion Rabbit
Download PDF
Download PDF
  • Original Article
  • Published: 01 January 2008

Effects of Pioglitazone on Nitric Oxide Bioavailability Measured Using a Catheter-Type Nitric Oxide Sensor in Angiotensin II−Infusion Rabbit

  • Toshio Imanishi1,
  • Akio Kuroi1,
  • Hideyuki Ikejima1,
  • Katsunobu Kobayashi1,
  • Seiichi Mochizuki2,
  • Masami Goto2,
  • Kiyoshi Yoshida3 &
  • …
  • Takashi Akasaka1 

Hypertension Research volume 31, pages 117–125 (2008)Cite this article

  • 903 Accesses

  • Metrics details

Abstract

Recently, peroxisome proliferator−activated receptor γ (PPARγ) ligands have been reported to increase nitric oxide (NO) bioavailability in vitro but not in vivo because of the difficulty of measuring plasma NO. Here, we investigated the effects of PPARγ on plasma NO concentrations using the newly developed NO sensor in angiotensin II (Ang II)−infused rabbits. Male New Zealand rabbits were randomized for infusion with Ang II, either alone or in combination with pioglitazone (a PPARγ agonist). Plasma NO concentration was measured using the catheter-type NO sensor placed in the aorta. We then infused NG-methyl-L-arginine (L-NMMA) and acetylcholine (ACh) into the aortic arch to measure the basal and ACh-induced plasma NO concentration. Vascular nitrotyrosine levels were examined by enzyme-linked immunoassay (ELISA). Both an immunohistochemical study and Western blotting were performed to examine the PPARγ and gp91phox expression. The cotreatment with pioglitazone significantly suppressed the negative effects of Ang II, that is, the decreases in basal and ACh-induced NO production and the increase in vascular nitrotyrosine levels. Both the immunohistochemical study and Western blotting demonstrated that pioglitazone treatment enhaced PPARγ expression and greatly inhibited Ang II−induced up-regulation of gp91phox. In conclusion, the PPARγ agonist pioglitazone significantly improved NO bioavailability in Ang II−infused rabbits, most likely by attenuating nitrosative stresses. (Hypertens Res 2008; 31: 117−125)

Similar content being viewed by others

Pleiotropic activation of endothelial function by angiotensin II receptor blockers is crucial to their protective anti-vascular remodeling effects

Article Open access 13 June 2022

Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice

Article 30 March 2022

A randomized placebo-controlled trial in healthy volunteers examining the effects of acetaminophen and NO-acetaminophen NCX 701 in human endotoxemia

Article Open access 29 September 2025

Article PDF

References

  1. Rajagopalan S, Kurz S, Munzel T, et al : Angiotensin II−mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alternations of vasomotor tone. J Clin Invest 1996; 97: 1916–1923.

    Article  CAS  Google Scholar 

  2. Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT : Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci U S A 1997; 94: 14483–14488.

    Article  CAS  Google Scholar 

  3. Dinerman JL, Lowenstein CJ, Snyder SH : Molecular mechanisms of nitric oxide regulation. Circ Res 1993; 73: 217–222.

    Article  CAS  Google Scholar 

  4. Wennmalm A, Benthin G, Petersson AS : Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood or the oxygenation of its red cell haemoglobin. Br J Pharmacol 1992; 106: 507–508.

    Article  CAS  Google Scholar 

  5. Schechter AN, Gladwin MT : Hemoglobin and the paracrine and endocrine functions of nitric oxide. N Engl J Med 2003; 348: 1483–1485.

    Article  CAS  Google Scholar 

  6. Stamler JS, Jia L, Eu JP, et al : Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997; 276: 2034–2037.

    Article  CAS  Google Scholar 

  7. Malinski T, Taha Z : Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 1992; 358: 676–678.

    Article  CAS  Google Scholar 

  8. Shibuki K : An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 1990; 9: 69–76.

    Article  CAS  Google Scholar 

  9. Pinsky DJ, Patton S, Mesaros S, et al : Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res 1997; 81: 372–379.

    Article  CAS  Google Scholar 

  10. Vallance P, Patton S, Bhagat K, et al : Direct measurement of nitric oxide in human beings. Lancet 1995; 345: 153–154.

    Article  Google Scholar 

  11. Mochizuki S, Himi N, Miyasaka T, et al : Evaluation of basic performance and applicability of a newly developed in vivo nitric oxide sensor. Physiol Meas 2002; 23: 261–268.

    Article  Google Scholar 

  12. Mochizuki S, Miyasaka T, Goto M, et al : Measurement of acetylcholine-induced endothelium-derived nitric oxide in aorta using a newly developed catheter-type nitric oxide sensor. Biochem Biophy Res Commun 2003; 306: 505–508.

    Article  CAS  Google Scholar 

  13. Neishi Y, Mochizuki S, Miyasaka T, et al : Evaluation of bioavailability of nitric oxide in coronary circulation by direct measurement of plasma nitric oxide concentration. Proc Natl Acad Sci U S A 2005; 102: 11456–11461.

    Article  CAS  Google Scholar 

  14. Imanishi T, Kobayashi K, Kuroi A, Mochizuki S, Goto M, Akasaka T : Effects of angiotensin II on nitric oxide bioavailability measured using a catheter-type nitric oxide sensor. Hypertension 2006; 48: 1058–1065.

    Article  CAS  Google Scholar 

  15. Bishop-Bailey D : Peroxisome proliferator−activated receptors in the cardiovascular system. Br J Pharmacol 2000; 129: 823–834.

    Article  CAS  Google Scholar 

  16. Caballero AE, Saouaf R, Lim SC, et al : The effects of trogliotazone, an insulin sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism 2003; 52: 173–180.

    Article  CAS  Google Scholar 

  17. Imanishi T, Jonathan M, Quoc H, Kevin D, Schwartz SM, Han DKM : Expression of cellular FLICE-inhibitory protein in human coronary arteries and in a rat vascular injury model. Am J Pathol 2000; 156: 125–137.

    Article  CAS  Google Scholar 

  18. Ter Steege JCA, Koster-Kamphuis L, Van Straaten EA, Forget P, Buurman WA : Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med 1998; 25: 953–963.

    Article  CAS  Google Scholar 

  19. Fukushima T, Nixon JC : Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem 1980; 102: 176–188.

    Article  CAS  Google Scholar 

  20. Guzik TJ, Mussa S, Gastaldi D, et al : Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002; 105: 1656–1662.

    Article  CAS  Google Scholar 

  21. Sorescu D, Weiss D, Lassegue B, et al : Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 2002; 105: 1429–1435.

    Article  CAS  Google Scholar 

  22. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW : Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148.

    Article  CAS  Google Scholar 

  23. Lassegue B, Sorescu D, Szocs K, et al : Novel gp91phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II−induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001; 88: 888–894.

    Article  CAS  Google Scholar 

  24. Takeda K, Ichiki T, Tokunou T, et al : Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation 2000; 102: 1834–1839.

    Article  CAS  Google Scholar 

  25. Sugawara A, Takeuchi K, Uruno A, et al : Transcriptional suppression of type 1 angiotensin II receptor gene expression by PPARγ in vascular smooth muscle cells. Endocrinology 2001; 142: 3125–3134.

    Article  CAS  Google Scholar 

  26. Sugawara A, Takeuchi K, Uruno A, et al : Differential effects among thiazolidinediones on the transcription of thromboxane receptor and angiotensin II type 1 receptor gene. Hypertens Res 2001; 24: 229–233.

    Article  CAS  Google Scholar 

  27. Gori T, Mark SS, Kelly S, Parker JD : Evidence supporting abnormalities in nitric oxide synthase function induced by nitroglycerin in humans. J Am Coll Cardiol 2001; 38: 1096–1101.

    Article  CAS  Google Scholar 

  28. Mochizuki S, Sipkema P, Goto M, et al : Exogenous NO suppresses flow-induced endothelium-derived NO production because of depletion of tetrahydrobiopterin. Am J Physiol Heart Circ Physiol 2005; 288: H553–H558.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan

    Toshio Imanishi, Akio Kuroi, Hideyuki Ikejima, Katsunobu Kobayashi & Takashi Akasaka

  2. Department of Medical Engineering, Kawasaki Medical School, Kurashiki, Japan

    Seiichi Mochizuki & Masami Goto

  3. Division of Cardiology, Kawasaki Medical School, Kurashiki, Japan

    Kiyoshi Yoshida

Authors
  1. Toshio Imanishi
    View author publications

    Search author on:PubMed Google Scholar

  2. Akio Kuroi
    View author publications

    Search author on:PubMed Google Scholar

  3. Hideyuki Ikejima
    View author publications

    Search author on:PubMed Google Scholar

  4. Katsunobu Kobayashi
    View author publications

    Search author on:PubMed Google Scholar

  5. Seiichi Mochizuki
    View author publications

    Search author on:PubMed Google Scholar

  6. Masami Goto
    View author publications

    Search author on:PubMed Google Scholar

  7. Kiyoshi Yoshida
    View author publications

    Search author on:PubMed Google Scholar

  8. Takashi Akasaka
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Toshio Imanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imanishi, T., Kuroi, A., Ikejima, H. et al. Effects of Pioglitazone on Nitric Oxide Bioavailability Measured Using a Catheter-Type Nitric Oxide Sensor in Angiotensin II−Infusion Rabbit. Hypertens Res 31, 117–125 (2008). https://doi.org/10.1291/hypres.31.117

Download citation

  • Received: 23 May 2007

  • Accepted: 25 July 2007

  • Issue date: 01 January 2008

  • DOI: https://doi.org/10.1291/hypres.31.117

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • nitric oxide (NO)
  • peroxisome proliferator−activated receptor agonist
  • angiotensin II
  • oxidative stress
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited