Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Akt-FOXO3a Signaling Affects Human Endothelial Progenitor Cell Differentiation
Download PDF
Download PDF
  • Original Article
  • Published: 01 January 2008

Akt-FOXO3a Signaling Affects Human Endothelial Progenitor Cell Differentiation

  • Masaki Mogi1,2,
  • Kenneth Walsh2,
  • Masaru Iwai1 &
  • …
  • Masatsugu Horiuchi1 

Hypertension Research volume 31, pages 153–159 (2008)Cite this article

  • 1396 Accesses

  • Metrics details

Abstract

Here we address the effect of Akt signaling on endothelial progenitor cells (EPCs). Human peripheral blood mononuclear cells (PBMCs) were cultured on fibronectin-coated dishes in EPC differentiation medium. PBMCs differentiated in a series of three steps: proliferation for foci formation, tight attachment to the dishes in the early stages of differentiation, and maturation in the late stages. In Western blot analysis, Akt expression was attenuated in the early stages of differentiation and was gradually upregulated during EPC maturation. Forkhead box−containing protein, class O 3a (FOXO3a), an Akt downstream target, was downregulated through phosphorylation in the late stages of EPC differentiation. Adenovirus-mediated overexpression of activated FOXO3a in PBMCs markedly increased the number of cell foci but reduced the number of DiI-acetyl LDL EPCs that appear at later time points. These data suggest that Akt/FOXO3a signaling is an important regulator of EPC maturation. (Hypertens Res 2008; 31: 153−159)

Similar content being viewed by others

An optogenetic-phosphoproteomic study reveals dynamic Akt1 signaling profiles in endothelial cells

Article Open access 26 June 2023

PXDN reduces autophagic flux in insulin-resistant cardiomyocytes via modulating FoxO1

Article Open access 26 April 2021

Autophagy and mitophagy-related extracellular mitochondrial dysfunction of cerebrospinal fluid cells in patients with hemorrhagic moyamoya disease

Article Open access 23 August 2023

Article PDF

References

  1. Datta SR, Brunet A, Greenberg ME : Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    Article  CAS  Google Scholar 

  2. Mogi M, Yang J, Lambert JF, et al : Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 2003; 278: 39068–39075.

    Article  CAS  Google Scholar 

  3. Fujio Y, Guo K, Mano T, Mitsuuchi Y, Testa JR, Walsh K : Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol 1999; 19: 5073–5082.

    Article  CAS  Google Scholar 

  4. Rommel C, Clarke BA, Zimmermann S, et al : Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 1999; 286: 1738–1741.

    Article  CAS  Google Scholar 

  5. Chen Y, Li X, Eswarakumar VP, Seger R, Lonai P : Fibroblast growth factor (FGF) signaling through PI 3-kinase and Akt/PKB is required for embryoid body differentiation. Oncogene 2000; 19: 3750–3756.

    Article  CAS  Google Scholar 

  6. Accili D, Arden KC : FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004; 117: 421–426.

    Article  CAS  Google Scholar 

  7. Brunet A, Bonni A, Zigmond MJ, et al : Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  Google Scholar 

  8. Birkenkamp KU, Coffer PJ : Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 2003; 31: 292–297.

    Article  CAS  Google Scholar 

  9. Bakker WJ, Blazquez-Domingo M, Kolbus A, et al : FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol 2004; 164: 175–184.

    Article  CAS  Google Scholar 

  10. Engstruöm M, Karlsson R, Jönsson JI : Inactivation of the forkhead transcription factor FoxO3 is essential for PKB-mediated survival of hematopoietic progenitor cells by kit ligand. Exp Hematol 2003; 31: 316–323.

    Article  Google Scholar 

  11. Kashii Y, Uchida M, Kirito K, et al : A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase−Akt activation pathway in erythropoietin signal transduction. Blood 2000; 96: 941–949.

    CAS  PubMed  Google Scholar 

  12. Furuyama T, Kitayama K, Shimoda Y, et al : Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 2004; 279: 34741–34749.

    Article  CAS  Google Scholar 

  13. Hosaka T, Biggs WH 3rd, Tieu D, et al : Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A 2004; 101: 2975–2980.

    Article  CAS  Google Scholar 

  14. Kalka C, Masuda H, Takahashi T, et al : Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000; 97: 3422–3427.

    Article  CAS  Google Scholar 

  15. Nagata D, Mogi M, Walsh K : AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem 2003; 278: 31000–31006.

    Article  CAS  Google Scholar 

  16. Skurk C, Maatz H, Kim HS, et al : The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 2004; 279: 1513–1525.

    Article  CAS  Google Scholar 

  17. Urbich C, Knau A, Fichtlscherer S, et al : FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J 2005; 19: 974–976.

    Article  CAS  Google Scholar 

  18. Kim SJ, Cheon SH, Yoo SJ, et al : Contribution of the PI3K/Akt/PKB signal pathway to maintenance of self-renewal in human embryonic stem cells. FEBS Lett 2005; 579: 534–540.

    Article  CAS  Google Scholar 

  19. Reya T, Duncan AW, Ailles L, et al : A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  Google Scholar 

  20. Paling NR, Wheadon H, Bone HK, Welham MJ : Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase−dependent signaling. J Biol Chem 2004; 279: 48063–48070.

    Article  CAS  Google Scholar 

  21. Potente M, Urbich C, Sasaki K, et al : Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 2005; 115: 2382–2392.

    Article  CAS  Google Scholar 

  22. Garry DJ, Meeson A, Elterman J, et al : Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc Natl Acad Sci U S A 2000; 97: 5416–5421.

    Article  CAS  Google Scholar 

  23. Winnier GE, Hargett L, Hogan BL : The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev 1997; 11: 926–940.

    Article  CAS  Google Scholar 

  24. Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E : Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 1995; 14: 1141–1152.

    Article  CAS  Google Scholar 

  25. Freyaldenhoven BS, Freyaldenhoven MP, Iacovoni JS, Vogt PK : Aberrant cell growth induced by avian winged helix proteins. Cancer Res 1997; 57: 123–129.

    CAS  PubMed  Google Scholar 

  26. Rumpold H, Wolf D, Koeck R, Gunsilius E : Endothelial progenitor cells: a source for therapeutic vasculogenesis? J Cell Mol Med 2004; 8: 509–518.

    Article  Google Scholar 

  27. Grant MB, May WS, Caballero S, et al : Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002; 8: 607–612.

    Article  CAS  Google Scholar 

  28. Hill JM, Zalos G, Halcox JP, et al : Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593–600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan

    Masaki Mogi, Masaru Iwai & Masatsugu Horiuchi

  2. Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, USA

    Masaki Mogi & Kenneth Walsh

Authors
  1. Masaki Mogi
    View author publications

    Search author on:PubMed Google Scholar

  2. Kenneth Walsh
    View author publications

    Search author on:PubMed Google Scholar

  3. Masaru Iwai
    View author publications

    Search author on:PubMed Google Scholar

  4. Masatsugu Horiuchi
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Masatsugu Horiuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogi, M., Walsh, K., Iwai, M. et al. Akt-FOXO3a Signaling Affects Human Endothelial Progenitor Cell Differentiation. Hypertens Res 31, 153–159 (2008). https://doi.org/10.1291/hypres.31.153

Download citation

  • Received: 22 April 2007

  • Accepted: 05 August 2007

  • Issue date: 01 January 2008

  • DOI: https://doi.org/10.1291/hypres.31.153

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Akt
  • FOXO3a
  • endothelial progenitor cells
  • mononuclear cells
  • differentiation

This article is cited by

  • miR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution

    • Xiaolong Du
    • Nan Hu
    • Xiaoqiang Li

    Stem Cell Research & Therapy (2020)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited