Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Visualisation of the Effects of Dilazep on Rat Afferent and Efferent Arterioles In Vivo
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 2008

Visualisation of the Effects of Dilazep on Rat Afferent and Efferent Arterioles In Vivo

  • Hiroshi Nakamoto1,
  • Yasuo Ogasawara1 &
  • Fumihiko Kajiya1 

Hypertension Research volume 31, pages 315–324 (2008)Cite this article

  • 1166 Accesses

  • Metrics details

Abstract

Although the effects of dilazep hydrochloride (dilazep), a nucleoside transport inhibitor, have been examined, there have been no visualisation studies on the physiological effects of dilazep on the glomerular arterioles. The purpose of this study was to visualise and evaluate the effects of dilazep and consequently the effects of adenosine, which dilazep augments by measuring glomelurar diameters, renal blood flow and resistance in rats in vivo. We time-sequentially examined afferent and efferent arteriolar diameter changes using an intravital videomicroscope and renal blood flow. We administered dilazep at a dose of 300 μg/kg intravenously. To further investigate the effects of dilazep, rats were pre-treated with 8-p-sulfophenyl theophylline (a nonselective adenosine receptor antagonist), 8-cyclopentyl-1,3-dipropylxanthine (an A1 receptor antagonist), or 3,7-dimethyl-1-propargylxanthine (an A2 receptor antagonist). Dilazep constricted the afferent and efferent arterioles at the early phase and dilated them at the later phase, with the same degree of vasoconstrictive and vasodilatory effect on both arterioles. A1 blockade abolished vasoconstriction and augmented vasodilatation at the later phase and A2 blockade abolished vasodilatation and augmented vasoconstriction at the early phase. Non-selective blockade abolished both early vasoconstriction and later vasodilatation. In conclusion, adenosine augmented by dilazep constricted the afferent and efferent arterioles of the cortical nephrons at the early phase and dilated both arterioles at the later phase via A1 and A2 adenosine receptor activation, respectively. That the ratio of afferent to efferent arteriolar diameter was fairly constant suggests that intraglomerular pressure is maintained in the acute phase by adenosine despite the biphasic flow change.

Similar content being viewed by others

Pharmacologic and endotoxic reprogramming of renal vasodilatory, inflammatory, and apoptotic blemishes in weaning preeclamptic rats

Article Open access 08 March 2025

Molecular basis of antagonism of the dimeric human arginine vasopressin receptor 1A

Article Open access 16 January 2026

The effect of trichlormethiazide in autosomal dominant polycystic kidney disease patients receiving tolvaptan: a randomized crossover controlled trial

Article Open access 03 September 2021

Article PDF

References

  1. Okusa MD : A2A adenosine receptor: a novel therapeutic target in renal disease Am J Physiol Renal Physiol 2002; 282: F10–F18.

    Article  CAS  Google Scholar 

  2. Hansen PB, Schnermann J : Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am J Physiol Renal Physiol 2003; 285: F590–F599.

    Article  CAS  Google Scholar 

  3. Nakagawa Y, Gudenzi M, Mustafa SJ : Calcium entry blocking activity of dilazep and other adenosine potentiating compounds in guinea-pig atria. Eur J Pharmacol 1986; 122: 51–58.

    Article  CAS  Google Scholar 

  4. Nagase M, Kobayashi S, Sakakibara K, Honda N : Amelioration of albuminuria induced by dilazep administration in aminonucleoside nephrosis of rats. Jpn J Nephrol 1985; 27: 385–391.

    CAS  Google Scholar 

  5. Yukimura T, Miura K, Ito K, Yamamoto K : Renal vascular effects of dilazep antagonized by 3-isobutyl-1-methyl-xanthine. J Cardiovasc Pharmacol 1986; 8: 649–655.

    Article  CAS  Google Scholar 

  6. Kawabata M, Haneda M, Wang T, Imai M, Takabatake T : Effects of a nucleoside transporter inhibitor, dilazep, on renal microcirculation in rats. Hypertens Res 2002; 25: 615–621.

    Article  CAS  Google Scholar 

  7. Edwards RM : Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. Am J Physiol 1983; 244: F526–F534.

    CAS  PubMed  Google Scholar 

  8. Ito S, Johnson CS, Carretero OA : Modulation of angiotensin II–induced vasoconstriction by endothelium-derived relaxing factor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 1991; 87: 1656–1663.

    Article  CAS  Google Scholar 

  9. Yuan BH, Robinette JB, Conger JD : Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. Am J Physiol 1990; 258 ( 3 Pt 2): F741–F750.

    CAS  PubMed  Google Scholar 

  10. Joyner WL, Mohama RE, Myers TO, Gilmore JP : The selective response to adenosine of renal microvessels from hamster explants. Microvasc Res 1988; 35: 122–131.

    Article  Google Scholar 

  11. Dietrich MS, Steinhausen M : Differential reactivity of cortical and juxtamedullary glomeruli to adenosine-1 and adenosine-2 receptor stimulation and angiotensin-converting enzyme inhibition. Microvasc Res 1993; 45: 122–133.

    Article  CAS  Google Scholar 

  12. Loutzenhiser R, Epstein M, Hayashi K, Takenaka T, Forster H : Characterization of the renal microvascular effects of angiotensin II antagonist, DuP 753: studies in isolated perfused hydronephrotic kidneys. Am J Hypertens 1991; 4 ( 4 Pt 2): 309S–314S.

    Article  CAS  Google Scholar 

  13. Steinhausen M, Kucherer H, Parekh N, Weis S, Wiegman DL, Wilhelm KR : Angiotensin II control of the renal microcirculation: effect of blockade by saralasin. Kidney Int 1986; 30: 56–61.

    Article  CAS  Google Scholar 

  14. Yamamoto T, Hayashi K, Tomura Y, Tanaka H, Kajiya F : Direct in vivo visualization of renal microcirculation by intravital CCD videomicroscopy. Exp Nephrol 2001; 9: 150–155.

    Article  CAS  Google Scholar 

  15. Yamamoto T, Kajiya F, Goligorsky MS, et al: Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol 2002; 282: F1150–F1155.

    CAS  Google Scholar 

  16. Yamamoto T, Tomura Y, Tanaka H, Kajiya F : In vivo visualization of characteristics of renal microcirculation in hypertensive and diabetic rats. Am J Physiol 2001; 281: F571–F577.

    Article  CAS  Google Scholar 

  17. Sugino H, Shimada H, Tsuchimoto K : Role of adenosine in renal protection induced by a brief episode of ischemic preconditioning in rats. Jpn J Pharmacol 2001; 87: 134–142.

    Article  CAS  Google Scholar 

  18. Herrmann SC, Feigl EO : Subtraction method for the high-performance liquid chromatographic measurement of plasma adenosine. J Chromatogr 1992; 574: 247–253.

    Article  CAS  Google Scholar 

  19. Jackson EK, Dubey RK : Role of the extracellular cAMP-adenosine pathway in renal physiology. Am J Physiol 2001; 281: F597–F612.

    CAS  Google Scholar 

  20. Stepp DW, Van Bibber R, Kroll K, Feigl EO : Quantitative relation between interstitial adenosine concentration and coronary blood flow. Circ Res 1996; 79: 601–610.

    Article  CAS  Google Scholar 

  21. Ogasawara Y, Takehara K, Yamamoto T, Hashimoto R, Nakamoto H, Kajiya F : Quantitative blood velocity mapping in glomerular capillaries by in vivo observation with an intravital videomicroscope. Methods Inf Med 2000; 39: 175–178.

    Article  CAS  Google Scholar 

  22. Aki Y, Nishiyama A, Miyatake A, Kimura S, Kohno M, Abe Y : Role of adenosine A1 receptor in angiotensin II− and norepinephrine-induced renal vasoconstriction. J Pharmacol Exp Ther 2002; 303: 117–123.

    Article  CAS  Google Scholar 

  23. Ballarin M, Fredholm BB, Ambrosio S, Mahy N : Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol Scand 1991; 142: 97–103.

    Article  CAS  Google Scholar 

  24. Heistad DD, Marcus ML, Gourley JK, Busija DW : Effect of adenosine and dipyridamole on cerebral blood flow. Am J Physiol 1981; 240: H775–H780.

    CAS  PubMed  Google Scholar 

  25. Wang T, Mentzer RM Jr, Van Wylen DG : Interstitial adenosine with dipyridamole: effect of adenosine receptor blockade and adenosine deaminase. Am J Physiol 1992; 263 ( 2 Pt 2): H552–H558.

    CAS  PubMed  Google Scholar 

  26. Nishiyama A, Kimura S, He H, et al: Renal interstitial adenosine metabolism during ischemia in dogs. Am J Physiol 2001; 280: F231–F238.

    CAS  Google Scholar 

  27. Hardman JG, Goodman Gilman A, Lee E : Limbird Goodman & Gilman's the Pharmacological Basis of Therapeutics, 9th ed. New York, McGraw-Hill, 1996, 858 pp.

    Google Scholar 

  28. McCoy DE, Bhattacharya S, Olson BA, Levier DG, Arend LJ, Spielman WS : The renal adenosine system: structure, function, and regulation. Semin Nephrol 1993; 13: 31–40.

    CAS  PubMed  Google Scholar 

  29. Balakrishnan VS, Coles GA, Williams JD : Effects of intravenous adenosine on renal function in healthy human subjects. Am J Physiol 1996; 271 ( 2 Pt 2): F374–F381.

    CAS  PubMed  Google Scholar 

  30. Yamaguchi S, Umemura S, Tamura K, et al: Adenosine A1 receptor mRNA in microdissected rat nephron segments. Hypertension 1995; 26 ( 6 Pt 2): 1181–1185.

    Article  CAS  Google Scholar 

  31. Spielman WS, Arend LJ : Adenosine receptors and signaling in the kidney. Hypertension 1991; 17: 117–130.

    Article  CAS  Google Scholar 

  32. Nishiyama A, Inscho EW, Navar LG : Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol 2001; 280: F406–F414.

    CAS  Google Scholar 

  33. Navar LG, Inscho EW, Majid SA, Imig JD, Harrison-Bernard LM, Mitchell KD : Paracrine regulation of the renal microcirculation. Physiol Rev 1996; 76: 425–536.

    Article  CAS  Google Scholar 

  34. Agmon Y, Dinour D, Brezis M : Disparate effects of adenosine A1- and A2-receptor agonists on intrarenal blood flow. Am J Physiol 1993; 265 ( 6 Pt 2): F802–F806.

    CAS  Google Scholar 

  35. Tang L, Parker M, Fei Q, Loutzenhiser R : Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney. Am J Physiol 1999; 277 ( 6 Pt 2): F926–F933.

    CAS  PubMed  Google Scholar 

  36. Gabriels G, Endlich K, Rahn KH, Schlatter E, Steinhausen M : In vivo effects of diadenosine polyphosphates on rat renal microcirculation. Kidney Int 2000; 57: 2476–2484.

    Article  CAS  Google Scholar 

  37. Balakrishnan VS, Coles GA, Williams JD : A potential role for endogenous adenosine in control of human glomerular and tubular function. Am J Physiol 1993; 265 ( 4 Pt 2): F504–F510.

    CAS  PubMed  Google Scholar 

  38. Yaoita H, Ito O, Arima S, et al: Effect of adenosine on isolated afferent arterioles. Nippon Jinzo Gakkai Shi 1999; 41: 697–703 ( in Japanese).

    CAS  PubMed  Google Scholar 

  39. Yaar R, Jones MR, Chen JF, Ravid K : Animal models for the study of adenosine receptor function. J Cell Physiol 2005; 202: 9–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, Kurashiki, Japan

    Hiroshi Nakamoto, Yasuo Ogasawara & Fumihiko Kajiya

Authors
  1. Hiroshi Nakamoto
    View author publications

    Search author on:PubMed Google Scholar

  2. Yasuo Ogasawara
    View author publications

    Search author on:PubMed Google Scholar

  3. Fumihiko Kajiya
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Hiroshi Nakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamoto, H., Ogasawara, Y. & Kajiya, F. Visualisation of the Effects of Dilazep on Rat Afferent and Efferent Arterioles In Vivo. Hypertens Res 31, 315–324 (2008). https://doi.org/10.1291/hypres.31.315

Download citation

  • Received: 08 May 2007

  • Accepted: 13 August 2007

  • Issue date: 01 February 2008

  • DOI: https://doi.org/10.1291/hypres.31.315

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • adenosine
  • dilazep
  • kidney
  • vasoconstriction
  • visualisation

This article is cited by

  • Reduced adenosine A2a receptor–mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration

    • Patrik Persson
    • Peter Hansell
    • Fredrik Palm

    Kidney International (2015)

  • Dilazep synergistically reactivates latent HIV-1 in latently infected cells

    • Hanxian Zeng
    • Sijie Liu
    • Huanzhang Zhu

    Molecular Biology Reports (2014)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited