Abstract
Meso- and bathypelagic ecosystems represent the most common marine ecological niche on Earth and contain complex communities of microorganisms that are for the most part ecophysiologically poorly characterized. Gradients of physico-chemical factors (for example, depth-related gradients of light, temperature, salinity, nutrients and pressure) constitute major forces shaping ecosystems at activity ‘hot spots’ on the ocean floor, such as hydrothermal vents, cold seepages and mud volcanoes and hypersaline lakes, though the relationships between community composition, activities and environmental parameters remain largely elusive. We report here results of a detailed study of primary producing microbial communities in the deep Eastern Mediterranean Sea. The brine column of the deep anoxic hypersaline brine lake, L'Atalante, the overlying water column and the brine-seawater interface, were characterized physico- and geochemically, and microbiologically, in terms of their microbial community compositions, functional gene distributions and [14C]bicarbonate assimilation activities. The depth distribution of genes encoding the crenarchaeal ammonia monooxygenase α subunit (amoA), and the bacterial ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RuBisCO), was found to coincide with two different types of chemoautotrophy. Meso- and bathypelagic microbial communities were enriched in ammonia-oxidizing Crenarchaeota, whereas the autotrophic community at the oxic/anoxic interface of L'Atalante lake was dominated by Epsilonproteobacteria and sulfur-oxidizing Gammaproteobacteria. These autotrophic microbes are thus the basis of the food webs populating these deep-sea ecosystems.
Similar content being viewed by others

Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Accession codes
Accessions
GenBank/EMBL/DDBJ
References
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25: 3389–3402.
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA . (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919–1925.
Amann RI, Zarda B, Stahl DA, Schleifer KH . (1992). Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58: 3007–3011.
Campbell BJ, Engel AS, Porter ML, Takai K . (2006). The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4: 458–468.
Cline JD . (1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanog 14: 454–458.
Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA et al. (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31: 442–443.
Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PW, Bolhuis H et al. (2006). Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440: 203–207.
DeLong EF . (1998). Everything in moderation: Archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8: 649–654.
DeLong EF . (2006). Archaeal mysteries of the deep revealed. Proc Natl Acad Sci USA 103: 6417–6418.
Eder W, Schmidt M, Koch M, Garbe-Schonberg D, Huber R . (2002). Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4: 758–763.
Elsaied HE, Kimura H, Naganuma T . (2007). Composition of archaeal, bacterial, and eukaryal RuBisCO genotypes in three Western Pacific arc hydrothermal vent systems. Extremophiles 11: 191–202.
Fang J, Arakawa S, Kato C, Schouten S . (2006). Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiol Ecol 57: 429–441.
Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins Dos Santos VA, Yakimov MM et al. (2005). Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 12: 895–904.
Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB . (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683–14688.
Fujiwara Y, Kato C, Masui N, Fujikura K, Kojima S . (2001). Dual symbiosis in a cold seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Mar Ecol Prog Ser 214: 151–159.
Fusi N, de Larderel GA, Borelu A, Amelio O, Castradori D, Negri A et al. (1996). Marine geology of the Medriff Corridor, Mediterranean Ridge. Island Arc 5: 420–439.
Gevertz D, Telang AJ, Voordouw G, Jenneman GE . (2000). Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66: 2491–2501.
Glockner FO, Fuchs BM, Amann R . (1999). Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65: 3721–3726.
Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J et al. (2006a). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103: 18296–18301.
Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM et al. (2006b). Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4: e95.
Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D'Auria G, de Lima AF et al. (2007). Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9: 801–813.
Henneke E, De Lange GJ . (1990). The distribution of DOC and POC in the water column and brines of the Tyro and Bannock basins. Mar Chem 31: 113–122.
Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A et al. (2005). Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71: 2303–2309.
Higashi Y, Sunamura M, Kitamura K, Nakamura K, Kurusu Y, Ishibashi J et al. (2004). Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber. FEMS Microbiol Ecol 47: 327–336.
Horz HP, Rotthauwe JH, Lukow T, Liesack W . (2000). Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Methods 39: 197–204.
Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ER et al. (2006). Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Natl Acad Sci USA 103: 6442–6447.
Jetten MS, Sliekers O, Kuypers M, Dalsgaard T, van Niftrik L, Cirpus I et al. (2003). Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Appl Microbiol Biotechnol 63: 107–114.
Jürgens G, Glockner F, Amann R, Saano A, Montonen L, Likolammi M et al. (2000). Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization(1). FEMS Microbiol Ecol 34: 45–56.
Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA . (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543–546.
Lane DJ . (1991). 16S/23S rRNA Sequencing. In: Stackerbrandt E, Goodfellow M (eds). Nucleic Acid Techniques in Bacterial Systematics. Wiley: New York, pp 115–175.
Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH . (2001). Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl Environ Microbiol 67: 5143–5153.
Lloyd KG, Lapham L, Teske A . (2006). An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72: 7218–7230.
Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF . (2007). Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9: 1162–1175.
Mounè S, Caumette P, Matheron R, Willison JC . (2003). Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44: 117–130.
Nicol GW, Schleper C . (2006). Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14: 207–212.
Rotthauwe JH, Witzel KP, Liesack W . (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63: 4704–4712.
Russell MJ, Hall AJ . (1997). The emergence of life from iron monosulfide bubbles as a submarine hydrothermal redox and pH front. J Geol Soc London 154: 377–402.
Sass AM, Sass H, Coolen MJ, Cypionka H, Overmann J . (2001). Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania basin, Mediterranean Sea). Appl Environ Microbiol 67: 5392–5402.
Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MM, Lavik G, Petersen J et al. (2007). Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9: 1476–1484.
Schwedock J, Harmer TL, Scott KM, Hektor HJ, Seitz AP, Fontana MC et al. (2004). Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya velum: cbbLSQO. Arch Microbiol 182: 18–29.
Sørensen KB, Canfield DE, Teske AP, Oren A . (2005). Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71: 7352–7365.
Sørensen KB, Lauer A, Teske A . (2004). Archaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology 2: 151–161.
Sorokin DY, Tourova TP, Spiridonova EM, Rainey FA, Muyzer G . (2005). Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int J Syst Evol Microbiol 55: 1069–1075.
Takai K, Horikoshi K . (1999). Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152: 1285–1297.
van der Wielen PW, Heijs SK . (2007). Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ Microbiol 9: 1335–1340.
van der Wielen PW . (2006). Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin discovery. FEMS Microbiol Lett 259: 326–331.
van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L et al. (2005). The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307: 121–123.
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74.
Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach A-L . (1999). Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65: 4375–4384.
Wächtershäuser G . (1990). Evolution of the 1st metabolic cycles. Proc Natl Acad Sci USA 87: 200–204.
Wächtershäuser G . (2006). From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 361: 1787–1806.
Wächtershäuser G . (2007). On the chemistry and evolution of the pioneer organism. Chem Biodivers 4: 584–602.
Wallmann KJ, Suess E, Westbrook GH, Winckler G, Cita MB, the Medriff consortium. (1997). Salty brines on the Mediterranean sea floor. Nature 387: 31–32.
Wallner G, Amann R, Beisker W . (1993). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136–143.
Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT et al. (2002). Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68: 316–325.
Wuchter C, Abbas B, Coolen MJ, Herfort L, van Bleijswijk J, Timmers P et al. (2006). Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317–12322.
Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN . (2007). Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (Eastern Mediterranean). Orig Life Evol Biosph 37: 177–188.
Acknowledgements
We thank the captain and the crew of RV Urania for their expert handling of our casts and equipment at the L'Atalante brine lake and for highly productive. This study was supported by the European Commission's Sustainable Marine Ecosystem program, under BIODEEP (EVK3-2000-00042) Project and by the European Science Foundation under MIDDLE (06-EuroDEEP-FP-004 MIDDLE) project. PNG and KNT gratefully acknowledge the support of the Federal Ministry of Science and Education (BMBF), Project GenoMikPlus 0313751K. KNT thanks the Fonds der Chemischen Industrie.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yakimov, M., La Cono, V., Denaro, R. et al. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L'Atalante, Eastern Mediterranean Sea. ISME J 1, 743–755 (2007). https://doi.org/10.1038/ismej.2007.83
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2007.83
Keywords
This article is cited by
-
Bacterial community structure and diversity along the halocline of Tyro deep-sea hypersaline anoxic basin
Annals of Microbiology (2022)
-
Life on the edge: active microbial communities in the Kryos MgCl2-brine basin at very low water activity
The ISME Journal (2018)
-
Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins
The ISME Journal (2016)

