Abstract
There is an increasing interest in Faecalibacterium prausnitzii, one of the most abundant bacterial species found in the gut, given its potentially important role in promoting gut health. Although some studies have phenotypically characterized strains of this species, it remains a challenge to determine which factors have a key role in maintaining the abundance of this bacterium in the gut. Besides, phylogenetic analysis has shown that at least two different F. prausnitzii phylogroups can be found within this species and their distribution is different between healthy subjects and patients with gut disorders. It also remains unknown whether or not there are other phylogroups within this species, and also if other Faecalibacterium species exist. Finally, many studies have shown that F. prausnitzii abundance is reduced in different intestinal disorders. It has been proposed that F. prausnitzii monitoring may therefore serve as biomarker to assist in gut diseases diagnostics. In this mini-review, we aim to serve as an overview of F. prausnitzii phylogeny, ecophysiology and diversity. In addition, strategies to modulate the abundance of F. prausnitzii in the gut as well as its application as a biomarker for diagnostics and prognostics of gut diseases are discussed. This species may be a useful potential biomarker to assist in ulcerative colitis and Crohn’s disease discrimination.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A et al. (2014). Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147: 1055–1063 e1058.
Archer S, Meng S, Wu J, Johnson J, Tang R, Hodin R . (1998). Butyrate inhibits colon carcinoma cell growth through two distinct pathways. Surgery 124: 248–253.
Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS . (2008). Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 23: 1298–1303.
Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C et al. (2000). Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66: 1654–1661.
Barkas F, Liberopoulos E, Kei A, Elisaf M . (2013). Electrolyte and acid-base disorders in inflammatory bowel disease. Ann Gastroenterol 26: 23–28.
Barnich N, Darfeuille-Michaud A . (2007). Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol 13: 5571–5576.
Battat R, Kopylov U, Szilagyi A, Saxena A, Rosenblatt DS, Warner M et al. (2014). Vitamin B12 deficiency in inflammatory bowel disease: prevalence, risk factors, evaluation, and management. Inflamm Bowel Dis 20: 1120–1128.
Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJ et al. (2010). Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br J Nutr 104: 693–700.
Busquets D, Mas-de-Xaxars T, Lopez-Siles M, Martinez-Medina M, Bahi A, Sabat M et al. (2015). Anti-tumour necrosis factor treatment with adalimumab induces changes in the microbiota of Crohn's disease. J Crohns Colitis 9: 899–906.
Carlsson AH, Yakymenko O, Olivier I, Hakansson F, Postma E, Keita AV et al. (2013). Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol 48: 1136–1144.
Chassaing B, Darfeuille-Michaud A . (2011). The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140: 1720–1728.
Christl SU, Eisner H-D, Dusel G, Kasper H, Scheppach W . (1996). Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa. Dig Dis Sci 41: 2477–2481.
Chung WS, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D et al. (2016). Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol 14: 3.
de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T et al. (2013). Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62: 1238–1244.
Dorffel Y, Swidsinski A, Loening-Baucke V, Wiedenmann B, Pavel M . (2012). Common biostructure of the colonic microbiota in neuroendocrine tumors and Crohn's disease and the effect of therapy. Inflamm Bowel Dis 18: 1663–1671.
Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M et al. (2012). Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 24: 513–520 e246-517.
Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ . (2002). Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52: 2141–2146.
Foditsch C, Santos TM, Teixeira AG, Pereira RV, Dias JM, Gaeta N et al. (2014). Isolation and characterization of Faecalibacterium prausnitzii from calves and piglets. PLoS One 9: e116465.
Frank DN St, Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR . (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104: 13780–13785.
Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y et al. (2013). Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol 28: 613–619.
Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL et al. (2010). Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59: 3049–3057.
Hansen R, Russell RK, Reiff C, Louis P, McIntosh F, Berry SH et al. (2012). Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn's but not in ulcerative colitis. Am J Gastroenterol 107: 1913–1922.
Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJ, Thiele I . (2014). Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol 196: 3289–3302.
Hippe B, Remely M, Aumueller E, Pointner A, Magnet U, Haslberger AG . (2016). Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects. Benef Microbes 7: 1–8.
Hoffmann TW, Pham H-P, Bridonneau C, Aubry C, Lamas B, Martin-Gallausiaux C et al. (2015). Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J 10: 460–477.
Hooda S, Boler BM, Serao MC, Brulc JM, Staeger MA, Boileau TW et al. (2012). 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr 142: 1259–1265.
Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C . (2000). The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 118: 724–734.
Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J et al. (2009). Metabolomics reveals metabolic biomarkers of Crohn's disease. PLoS One 4: e6386.
Jia W, Whitehead RN, Griffiths L, Dawson C, Waring RH, Ramsden DB et al. (2010). Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol Lett 310: 138–144.
Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P et al. (2011). Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 60: 631–637.
Kabeerdoss J, Sankaran V, Pugazhendhi S, Ramakrishna BS . (2013). Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case-control study in India. BMC Gastroenterol 13: 20.
Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B et al. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498: 99–103.
Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J et al. (2007). The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133: 24–33.
Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ, Harmsen HJ . (2012). The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 6: 1578–1585.
Khan MT, van Dijl JM, Harmsen HJ . (2014). Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PLoS One 9: e96097.
Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L . (2003). Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 1: 855–862.
Lapidus A, Einarsson C . (1998). Bile composition in patients with ileal resection due to Crohn's disease. Inflamm Bowel Dis 4: 89–94.
Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H et al. (2008). Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105: 2117–2122.
Licht T, Hansen M, Bergstrom A, Poulsen M, Krath B, Markowski J et al. (2010). Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin. BMC Microbiol 10: 13–23.
Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HJ . (2012). Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 78: 420–428.
Lopez-Siles M, Martinez-Medina M, Busquets D, Sabat-Mir M, Duncan SH, Flint HJ et al. (2014). Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes. Int J Med Microbiol 304: 464–475.
Lopez-Siles M, Martinez-Medina M, Abella C, Busquets D, Sabat-Mir M, Duncan SH et al. (2015). Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl Environ Microbiol 81: 7582–7592.
Lopez-Siles M, Martinez-Medina M, Suris-Valls R, Aldeguer X, Sabat-Mir M, Duncan SH et al. (2016). Changes in the abundance of Faecalibacterium prausnitzii phylogroups I and II in the intestinal mucosa of inflammatory bowel disease and patients with colorectal cancer. Inflamm Bowel Dis 22: 28–41.
Louis P, Scott KP, Duncan SH, Flint HJ . (2007). Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102: 1197–1208.
Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V et al. (2013). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63: 1275–1283.
Magnusdottir S, Ravcheev DA, de Crecy-Lagard V, Thiele I . (2015). Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in Genetics 6: 148.
Malinen E, Rinttila T, Kajander K, Matto J, Kassinen A, Krogius L et al. (2005). Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol 100: 373–382.
Martin R, Chain F, Miquel S, Lu J, Gratadoux JJ, Sokol H et al. (2014). The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis. 20: 417–430.
Martin R, Miquel S, Chain F, Natividad JM, Jury J, Lu J et al. (2015). Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol 15: 67.
Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ . (2006). Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 12: 1136–1145.
McLaughlin SD, Clark SK, Tekkis PP, Nicholls RJ, Ciclitira PJ . (2010). The bacterial pathogenesis and treatment of pouchitis. Therap Adv Gastroenterol 3: 335–348.
Miquel S, Martin R, Rossi O, Bermudez-Humaran L, Chatel J, Sokol H et al. (2013). Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16: 255–261.
Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S et al. (2015). Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio 6: e00300–e00315.
Miquel S, Martin R, Lashermes A, Gillet M, Meleine M, Gelot A et al. (2016). Anti-nociceptive effect of Faecalibacterium prausnitzii in non-inflammatory IBS-like models. Sci Rep 6: 19399.
Mowat C, Cole A, Windsor A, Ahmad T, Arnott I, Driscoll R et al. (2011). Guidelines for the management of inflammatory bowel disease in adults. Gut 60: 571–607.
Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y . (2007). Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56: 1669–1674.
Nugent SG, Kumar D, Rampton DS, Evans DF . (2001). Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48: 571–577.
Ohman L, Simren M . (2007). New insights into the pathogenesis and pathophysiology of irritable bowel syndrome. Dig Liver Dis 39: 201–215.
Ott SJ, Plamondon S, Hart A, Begun A, Rehman A, Kamm MA et al. (2008). Dynamics of the mucosa-associated flora in ulcerative colitis patients during remission and clinical relapse. J Clin Microbiol 46: 3510–3513.
Parfrey LW, Knight R . (2012). Spatial and temporal variability of the human microbiota. Clin Microbiol Infect 18 (Suppl 4): 8–11.
Pereira SP, Bain IM, Kumar D, Dowling RH . (2003). Bile composition in inflammatory bowel disease: ileal disease and colectomy, but not colitis, induce lithogenic bile. Aliment Pharmacol Ther 17: 923–933.
Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI et al. (2010). Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105: 2420–2428.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
Qiu X, Zhang M, Yang X, Hong N, Yu C . (2013). Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohns Colitis 7: e558–e568.
Quevrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J et al. (2015). Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut. 65: 415–425.
Rajilic-Stojanovic M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S et al. (2011). Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141: 1792–1801.
Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P . (2009). Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101: 541–550.
Rigsbee L, Agans R, Shankar V, Kenche H, Khamis HJ, Michail S et al. (2012). Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol 107: 1740–1751.
Rossello-Mora R, Amann R . (2015). Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 38: 209–216.
Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG et al. (2013). Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57: 523–535.
Sadaghian Sadabad M, von Martels JZ, Khan MT, Blokzijl T, Paglia G, Dijkstra G et al. (2015). A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells. Sci Rep 5: 17906.
Salvatore S, Heuschkel R, Tomlin S, Davies SE, Edwards S, Walker-Smith JA et al. (2000). A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment Pharmacol Ther 14: 1567–1579.
Scanlan PD, Shanahan F, O'Mahony C, Marchesi JR . (2006). Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn's disease. J Clin Microbiol 44: 3980–3988.
Schloter M, Lebuhn M, Heulin T, Hartmann A . (2000). Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24: 647–660.
Schwab M, Reynders V, Loitsch S, Steinhilber D, Stein J, Schroder O . (2007). Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NF kappa B signalling. Mol Immunol 44: 3625–3632.
Seksik P, Sokol H, Lepage P, Vasquez N, Manichanh C, Mangin I et al. (2006). Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment Pharmacol Ther 24 (Suppl 3): 11–18.
Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P et al. (2011). Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6: e16393.
Sokol H, Lay C, Seksik P, Tannock GW . (2008a). Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis 14: 858–867.
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ et al. (2008b). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105: 16731–16736.
Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L et al. (2009). Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15: 1183–1189.
Swidsinski A, Loening-Baucke V, Lochs H, Hale LP . (2005). Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol 11: 1131–1140.
Swidsinski A, Loening-Baucke V, Vaneechoutte M, Doerffel Y . (2008). Active Crohn's disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm Bowel Dis 14: 147–161.
Tamboli CP, Neut C, Desreumaux P, Colombel JF . (2004). Dysbiosis in inflammatory bowel disease. Gut 53: 1–4.
Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP et al. (2009). Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11: 2574–2584.
Vermeiren J, Van den Abbeele P, Laukens D, Vigsnaes LK, De Vos M, Boon N et al. (2012). Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiol Ecol 79: 685–696.
Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X et al. (2011). Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5: 220–230.
Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X et al. (2012). Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6: 320–329.
Willing B, Halfvarson J, Dicksved J, Rosenquist M, Jarnerot G, Engstrand L et al. (2009). Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis 15: 653–660.
Wrzosek L, Miquel S, Noordine ML, Bouet S, Chevalier-Curt MJ, Robert V et al. (2013). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11: 61.
Acknowledgements
We thank Dr Xavier Aldeguer and MD David Busquets from the Hospital Dr Josep Trueta (Girona, Spain) and M.D Míriam Sabat Mir from the Hospital Santa Caterina (Salt, Spain) for their help and critical discussion concerning clinical aspects. This work was partially funded by the Spanish Ministry of Education and Science through the projects SAF2010-15896 and SAF2013-43284-P, which has been co-financed with FEDER funds. Dr Sylvia H Duncan acknowledges support from the Scottish Government Food, Land and People program.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Lopez-Siles, M., Duncan, S., Garcia-Gil, L. et al. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11, 841–852 (2017). https://doi.org/10.1038/ismej.2016.176
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2016.176
This article is cited by
-
Dietary interventions and the gut microbiota: a systematic literature review of 80 controlled clinical trials
Journal of Translational Medicine (2026)
-
α-Amylase in Aspergillus oryzae-fermented rice promotes the growth of human symbiotic Faecalibacterium Prausnitzii
Scientific Reports (2026)
-
Species-level taxonomic characterization enhances the power of saliva and feces stain microbiota for inferring the time since deposition (TsD)
International Journal of Legal Medicine (2026)
-
Early-life and concurrent predictors of the healthy adolescent microbiome in a cohort study
Genome Medicine (2025)
-
Metabolite-mediated interactions and direct contact between Fusobacterium varium and Faecalibacterium prausnitzii
Microbiome (2025)


