Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

An update on the genetics of pheochromocytoma

Abstract

Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are rare neuroendocrine tumors. About 30% or more of them are thought to be of inherited origin due to germ-line mutations in at least 10 well-characterized genes. There are data linking specific genotypes of these tumors to specific locations, typical biochemical phenotypes or future clinical behaviors. Conversely, clinical features, catecholamine production and immunohistochemistry evaluation can help with the proper order of genetic testing for PHEO and PGL. The identification of a germ-line mutation can lead to an early diagnosis, appropriate treatment, regular surveillance and better prognosis not only for the patient but also for their family members. Moreover, the latest discoveries in molecular pathogenesis of these tumors will provide an important basis for future personalized therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Mannelli M, Castellano M, Schiavi F, Filetti S, Giacchè M, Mori L et alItalian pheochromocytoma/paraganglioma network. Clinically guided genetic screening in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab 2009; 94: 1541–1547.

    Article  CAS  Google Scholar 

  2. Bryant J, Farmer J, Kessler LJ, Townsend RR, Nathanson KL . Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 2003; 95: 1196–1204.

    Article  CAS  Google Scholar 

  3. Benn DE, Robinson BG . Genetic basis of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2006; 20: 435–450.

    Article  CAS  Google Scholar 

  4. Burnichon N, Brière JJ, Libé R, Vescovo L, Rivière J, Tissier F et alSDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 2010; 19: 3011–3020.

    Article  CAS  Google Scholar 

  5. Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H et alSDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009; 325: 1139–1142.

    Article  CAS  Google Scholar 

  6. Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E et alSDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 2010; 11: 366–372.

    Article  CAS  Google Scholar 

  7. Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES et alGermline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 2010; 42: 229–233.

    Article  CAS  Google Scholar 

  8. Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, Landa I, Leandro-García LJ, Letón R et alExome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 2011; 43: 663–667.

    Article  Google Scholar 

  9. Timmers HJ, Kozupa A, Eisenhofer G, Raygada M, Adams KT, Solis D et alClinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol Metab 2007; 92: 779–786.

    Article  CAS  Google Scholar 

  10. Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J et alSuccinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab 2007; 92: 3822–3828.

    Article  CAS  Google Scholar 

  11. Eisenhofer G, Lenders JW, Timmers H, Mannelli M, Grebe SK, Hofbauer LC et alMeasurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem 2011; 57: 411–420.

    Article  CAS  Google Scholar 

  12. Karasek D, Frysak Z, Pacak K . Genetic testing for pheochromocytoma. Curr Hypertens Rep 2010; 12: 456–464.

    Article  Google Scholar 

  13. Frank-Raue K, Raue F . Multiple endocrine neoplasia type 2 (MEN 2). Eur J Cancer 2009; 45 (Suppl 1): 267–273.

    Article  Google Scholar 

  14. Pacak K, Eisenhofer G, Ilias I . Diagnosis of pheochromocytoma with special emphasis on MEN2 syndrome. 2009; 8: 111–116.

  15. Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O et alGenetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 2005; 23: 8812–8818.

    Article  CAS  Google Scholar 

  16. Lenders JW, Eisenhofer G, Mannelli M, Pacak K . Phaeochromocytoma. Lancet 2005; 366: 665–675.

    Article  Google Scholar 

  17. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et alThe tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275.

    Article  CAS  Google Scholar 

  18. Petri BJ, van Eijck CH, de Herder WW, Wagner A, de Krijger RR . Phaeochromocytomas and sympathetic paragangliomas. Br J Surg 2009; 96: 1381–1392.

    Article  Google Scholar 

  19. Maher ER, Yates JR, Harries R, Benjamin C, Harris R, Moore AT et alClinical features and natural history of von Hippel–Lindau disease. Q J Med 1990; 77: 1151–1163.

    Article  CAS  Google Scholar 

  20. Hes FJ, Höppener JW, Lips CJ . Clinical review 155: pheochromocytoma in Von Hippel–Lindau disease. J Clin Endocrinol Metab 2003; 88: 969–974.

    Article  CAS  Google Scholar 

  21. Srirangalingam U, Khoo B, Walker L, MacDonald F, Skelly RH, George E et alContrasting clinical manifestations of SDHB and VHL associated chromaffin tumours. Endocr Relat Cancer 2009; 16: 515–525.

    Article  CAS  Google Scholar 

  22. Boedeker CC, Erlic Z, Richard S, Kontny U, Gimenez-Roqueplo AP, Cascon A et alHead and neck paragangliomas in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 2009; 94: 1938–1944.

    Article  CAS  Google Scholar 

  23. Johannessen CM, Johnson BW, Williams SM, Chan AW, Reczek EE, Lynch RC et alTORC1 is essential for NF1-associated malignancies. Curr Biol 2008; 18: 56–62.

    Article  CAS  Google Scholar 

  24. Boyd KP, Korf BR, Theos A . Neurofibromatosis type 1. J Am Acad Dermatol 2009; 61: 1–14.

    Article  Google Scholar 

  25. Walther MM, Herring J, Enquist E, Keiser HR, Linehan WM . von Recklinghausen’s disease and pheochromocytomas. J Urol 1999; 162: 1582–1586.

    Article  CAS  Google Scholar 

  26. Zöller ME, Rembeck B, Odén A, Samuelsson M, Angervall L . Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population. Cancer 1997; 79: 2125–2131.

    Article  Google Scholar 

  27. Bausch B, Borozdin W, Neumann HP . European-American Pheochromocytoma Study Group. Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N Engl J Med 2006; 354: 2729–2731.

    Article  CAS  Google Scholar 

  28. Favier J, Gimenez-Roqueplo AP . Pheochromocytomas: the (pseudo)-hypoxia hypothesis. Best Pract Res Clin Endocrinol Metab 2010; 24: 957–968.

    Article  CAS  Google Scholar 

  29. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A et alMutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000; 287: 848–851.

    Article  CAS  Google Scholar 

  30. Burnichon N, Rohmer V, Amar L, Herman P, Leboulleux S, Darrouzet V et alPGL.NET network. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 2009; 94: 2817–2827.

    Article  CAS  Google Scholar 

  31. Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M et alEuropean-American Paraganglioma Study Group. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004; 292: 943–951 . Erratum in: JAMA 2004; 292: 1686.

    Article  CAS  Google Scholar 

  32. Hensen EF, Bayley JP . Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Fam Cancer 2011; 10: 355–363.

    Article  CAS  Google Scholar 

  33. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et alGene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001; 69: 49–54 . Erratum in: Am J Hum Genet 2002; 70: 565.

    Article  CAS  Google Scholar 

  34. Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F et alGermline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 2008; 100: 1260–1262.

    Article  CAS  Google Scholar 

  35. Pasini B, McWhinney SR, Bei T, Matyakhina L, Stergiopoulos S, Muchow M et alClinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008; 16: 79–88.

    Article  CAS  Google Scholar 

  36. Lee J, Wang J, Torbenson M, Lu Y, Liu QZ, Li S . Loss of SDHB and NF1 genes in a malignant phyllodes tumor of the breast as detected by oligo-array comparative genomic hybridization. Cancer Genet Cytogenet 2010; 196: 179–183.

    Article  CAS  Google Scholar 

  37. Timmers HJ, Gimenez-Roqueplo AP, Mannelli M, Pacak K . Clinical aspects of SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer 2009; 16: 391–400.

    Article  CAS  Google Scholar 

  38. Brouwers FM, Eisenhofer G, Tao JJ, Kant JA, Adams KT, Linehan WM et alHigh frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J Clin Endocrinol Metab 2006; 91: 4505–4509.

    Article  CAS  Google Scholar 

  39. Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L et alTumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat 2010; 31: 41–51.

    Article  CAS  Google Scholar 

  40. Müller U, Troidl C, Niemann S . SDHC mutations in hereditary paraganglioma/pheochromocytoma. Fam Cancer 2005; 4: 9–12.

    Article  Google Scholar 

  41. Jiménez C, Cote G, Arnold A, Gagel RF . Review: should patients with apparently sporadic pheochromocytomas or paragangliomas be screened for hereditary syndromes? J Clin Endocrinol Metab 2006; 91: 2851–2858.

    Article  Google Scholar 

  42. Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L et alSDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011; 96: E1472–E1476.

    Article  CAS  Google Scholar 

  43. Gill AJ, Benn DE, Chou A, Clarkson A, Muljono A, Meyer-Rochow GY et alImmunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum Pathol 2010; 41: 805–814.

    Article  CAS  Google Scholar 

  44. van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn EM et alAn immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009; 10: 764–771.

    Article  CAS  Google Scholar 

  45. Jiang S, Dahia PL . Minireview: the busy road to pheochromocytomas and paragangliomas has a new member, TMEM127. Endocrinology 2011; 152: 2133–2140.

    Article  CAS  Google Scholar 

  46. Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Pérez L, King EE et alSpectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 2010; 304: 2611–2619.

    Article  CAS  Google Scholar 

  47. Neumann HP, Sullivan M, Winter A, Malinoc A, Hoffmann MM, Boedeker CC et alGermline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites. J Clin Endocrinol Metab 2011; 96: E1279–E1282.

    Article  CAS  Google Scholar 

  48. Grandori C, Cowley SM, James LP, Eisenman RN . The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653–699.

    Article  CAS  Google Scholar 

  49. Schlisio S, Kenchappa RS, Vredeveld LC, George RE, Stewart R, Greulich H et alThe kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 2008; 22: 884–893.

    Article  CAS  Google Scholar 

  50. Opocher G, Schiavi F . Genetics of pheochromocytomas and paragangliomas. Best Pract Res Clin Endocrinol Metab 2010; 24: 943–956.

    Article  CAS  Google Scholar 

  51. Welander J, Söderkvist P, Gimm O . Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 2011; 18: R253–R276.

    Article  CAS  Google Scholar 

  52. Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau-Salle F et alPHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 2008; 359: 2685–2692.

    Article  CAS  Google Scholar 

  53. Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M et alA HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005; 1: 72–80.

    Article  CAS  Google Scholar 

  54. Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J . HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 2003; 22: 4082–4090.

    Article  CAS  Google Scholar 

  55. Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP et alNeuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 2005; 8: 155–167.

    Article  Google Scholar 

  56. Vaqué JP, Fernández-García B, García-Sanz P, Ferrandiz N, Bretones G, Calvo F et alc-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation. Mol Cancer Res 2008; 6: 325–339.

    Article  Google Scholar 

  57. Cascón A, Pita G, Burnichon N, Landa I, López-Jiménez E, Montero-Conde C et alGenetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab 2009; 94: 1701–1705.

    Article  Google Scholar 

  58. Erlic Z, Rybicki L, Peczkowska M, Golcher H, Kann PH, Brauckhoff M et alEuropean-American Pheochromocytoma Study Group. Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin Cancer Res 2009; 15: 6378–6385.

    Article  CAS  Google Scholar 

  59. Pacak K, Eisenhofer G, Ahlman H, Bornstein SR, Gimenez-Roqueplo AP, Grossman AB et alInternational Symposium on Pheochromocytoma. Pheochromocytoma: recommendations for clinical practice from the First International Symposium October 2005. Nat Clin Pract Endocrinol Metab 2007; 3: 92–102.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Pacak.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasek, D., Shah, U., Frysak, Z. et al. An update on the genetics of pheochromocytoma. J Hum Hypertens 27, 141–147 (2013). https://doi.org/10.1038/jhh.2012.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/jhh.2012.20

Keywords

This article is cited by

Search

Quick links