Abstract
Interactions between microbes and human hosts can range from a benign, even symbiotic collaboration to a competition that may turn fatal — resulting in death of the host, the microbe or both. Despite advances that have been made over the past decades in understanding microbial pathogens, more people worldwide still die every year from infectious disease than from any other cause. This highlights the relevance of continuing to probe the mechanisms used by microorganisms to cause disease, and emphasizes the need for new model systems to advance our understanding of host–pathogen interactions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Kaper, J. B., Fasano, A. & Trucksis, M. in Vibrio cholerae and Cholera: Molecular to Global Perspectives (eds Wachsmuth, I. K., Blake, P. A. & Olsvik, Ø.) 145–176 (ASM Press, Washington DC, 1994).
Phillips, R. A. Water and electrolyte losses in cholera. Fed. Proc. 23, 705–718 (1964).
Wilhelmi, I., Roman, E. & Sanchez-Fauquier, A. Viruses causing gastroenteritis. Clin. Microbiol. Infect. 9, 247–262 (2003).
Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).
Schmidt, H. & Hensel, M. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17, 14–56 (2004).
Cornelis, G. R. The Yersinia Ysc–Yop ‘type III’ weaponry. Nature Rev. Mol. Cell Biol. 3, 742–752 (2002).
Christie, P. J. & Vogel, J. P. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360 (2000).
Brake, D. A. Parasites and immune responses: memory illusion? DNA Cell Biol. 22, 405–419 (2003).
Crowe, S., Zhu, T. & Muller, W. A. The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J. Leukoc. Biol. 74, 635–641 (2003).
Jarvis, M. A. & Nelson, J. A. Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr. Opin. Microbiol. 5, 403–407 (2002).
Johnson, W. E. & Desrosiers, R. C. Viral persistance: HIV's strategies of immune system evasion. Annu. Rev. Med. 53, 499–518 (2002).
Ernst, P. B. & Gold, B. D. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol. 54, 615–640 (2000).
Valenzuela, M., Cerda, O. & Toledo, H. Overview on chemotaxis and acid resistance in Helicobacter pylori. Biol. Res. 36, 429–436 (2003).
Weeks, D. L., Eskandari, S., Scott, D. R. & Sachs, G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287, 482–485 (2000).
Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).
Smith, M. F. Jr et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-κB activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32552–32560 (2003).
Lee, S. K. et al. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5, 1345–1356 (2003).
Gewirtz, A. T. et al. Helicobacter pylori flagellin evades Toll-like receptor 5-mediated innate immunity. J. Infect. Dis. 189, 1914–1920 (2004).
Rhen, M., Eriksson, S., Clements, M., Bergstrom, S. & Normark, S. J. The basis of persistent bacterial infections. Trends Microbiol. 11, 80–86 (2003).
Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102 (2003).
Umehara, S., Higashi, H., Ohnishi, N., Asaka, M. & Hatakeyama, M. Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22, 8337–8842 (2003).
Bode, G., Malfertheiner, P. & Ditschuneit, H. Pathogenetic implications of ultrastructural findings in Campylobacter pylori related gastroduodenal disease. Scand. J. Gastroenterol. Suppl. 142, 25–39 (1988).
Foliguet, B., Vicari, F., Guedenet, J. C., De Korwin, J. D. & Marchal, L. Scanning electron microscopic study of Campylobacter pylori and associated gastroduodenal lesions [in French]. Gastroenterol. Clin. Biol. 13, 65B–70B (1989).
Amieva, M. R., Salama, N. R., Tompkins, L. S. & Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690 (2002).
Semino-Mora, C. et al. Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. J. Infect. Dis. 187, 1165–1177 (2003).
Israel, D. A. et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl Acad. Sci. USA 98, 14625–14630 (2001).
Philpott, D. J. et al. Reduced activation of inflammatory responses in host cells by mouse-adapted Helicobacter pylori isolates. Cell. Microbiol. 4, 285–296 (2002).
Azuma, T. et al. Association between diversity in the Src homology 2 domain-containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. J. Infect. Dis. 189, 820–827 (2004).
Aras, R. A. et al. Natural variation in populations of persistently colonizing bacteria affect human host cell phenotype. J. Infect. Dis. 188, 486–496 (2003).
Loughlin, M. F., Barnard, F. M., Jenkins, D., Sharples, G. J. & Jenks, P. J. Helicobacter pylori mutants defective in RuvC Holliday junction resolvase display reduced macrophage survival and spontaneous clearance from the murine gastric mucosa. Infect. Immun. 71, 2022–2031 (2003).
Wain, J. et al. Molecular typing of multiple-antibiotic-resistant Salmonella enterica serovar Typhi from Vietnam: application to acute and relapse cases of typhoid fever. J. Clin. Microbiol. 37, 2466–2472 (1999).
Levine, M. M., Black, R. E. & Lanata, C. Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J. Infect. Dis. 146, 724–726 (1982).
Wain, J. et al. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J. Clin. Microbiol. 39, 1571–1576 (2001).
Sinnott, C. R. & Teall, A. J. Persistent gallbladder carriage of Salmonella typhi. Lancet 1 (8539), 976 (1987).
Monack, D. M., Bouley, D. M. & Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J. Exp. Med. 199, 231–241 (2004).
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993).
Merrell, D. S. & Camilli, A. Information overload: assigning genetic functionality in the age of genomics and large-scale screening. Trends Microbiol. 10, 571–574 (2002).
Koehler, J. E. in Persistent Bacterial Infections (eds Nataro, J. M. & Blaser, M. J.) 339–353 (ASM Press, Washington DC, 2000).
Koehler, J. E., Glaser, C. A. & Tappero, J. W. Rochalimaea henselae infection. A new zoonosis with the domestic cat as reservoir. J. Am. Med. Assoc. 271, 531–535 (1994).
Schulein, R. et al. Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J. Exp. Med. 193, 1077–1086 (2001).
Koehler, J. E., Quinn, F. D., Berger, T. G., LeBoit, P. E. & Tappero, J. W. Isolation of Rochalimaea species from cutaneous and osseous lesions of bacillary angiomatosis. N. Engl. J. Med. 327, 1625–1631 (1992).
Koesling, J., Aebischer, T., Falch, C., Schulein, R. & Dehio, C. Cutting edge: antibody-mediated cessation of hemotropic infection by the intraerythrocytic mouse pathogen Bartonella grahamii. J. Immunol. 167, 11–14 (2001).
Capo, C., Amirayan-Chevillard, N., Brouqui, P., Raoult, D. & Mege, J. L. Bartonella quintana bacteremia and overproduction of interleukin-10: model of bacterial persistence in homeless people. J. Infect. Dis. 187, 837–844 (2003).
Urban, B. C. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999).
Schulein, R. & Dehio, C. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol. Microbiol. 46, 1053–1067 (2002).
Watarai, M., Makino, S. & Shirahata, T. An essential virulence protein of Brucella abortus, VirB4, requires an intact nucleoside-triphosphate-binding domain. Microbiology 148, 1439–1446 (2002).
Jenkins, M. K. et al. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23–45 (2001).
Mascie-Taylor, C. G. & Karim, E. The burden of chronic disease. Science 302, 1921–1922 (2003).
Gubler, D. J. Resurgent vector-borne diseases as a global health problem. Emerg. Infect. Dis. 4, 442–450 (1998).
Hilbi, H. et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32895–32900 (1998).
Geng, Y. et al. Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. J. Immunol. 164, 5522–5529 (2000).
Danelishvili, L., McGarvey, J., Li, Y. J. & Bermudez, L. E. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell. Microbiol. 5, 649–660 (2003).
Braun, M. C., He, J., Wu, C. Y. & Kelsall, B. L. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor β1 and β2 chain expression. J. Exp. Med. 189, 541–552 (1999).
Vistica, B. P., McAllister, C. G., Sekura, R. D., Ihle, J. N. & Gery, I. Dual effects of pertussis toxin on lymphoid cells in culture. Cell. Immunol. 101, 232–241 (1986).
Mu, H. H. & Sewell, W. A. Enhancement of interleukin-4 production by pertussis toxin. Infect. Immun. 61, 2834–2840 (1993).
Thern, A., Stenberg, L., Dahlback, B. & Lindahl, G. Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system. J. Immunol. 154, 375–386 (1995).
Grenier, D. Inactivation of human serum bactericidal activity by a trypsinlike protease isolated from Porphyromonas gingivalis. Infect. Immun. 60, 1854–1857 (1992).
Peterson, P. K., Verhoef, J., Sabath, L. D. & Quie, P. G. Effect of protein A on staphylococcal opsonization. Infect. Immun. 15, 760–764 (1977).
Bjorck, L. Protein L. A novel bacterial cell wall protein with affinity for Ig L chains. J. Immunol. 140, 1194–1197 (1988).
Stenger, S., Niazi, K. R. & Modlin, R. L. Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J. Immunol. 161, 3582–3588 (1998).
Krall, R., Schmidt, G., Aktories, K. & Barbieri, J. T. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect. Immun. 68, 6066–6068 (2000).
Barbieri, J. T. Pseudomonas aeruginosa exoenzyme S, a bifunctional type-III secreted cytotoxin. Int. J. Med. Microbiol. 290, 381–387 (2000).
Marra, A., Blander, S. J., Horwitz, M. A. & Shuman, H. A. Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc. Natl Acad. Sci. USA 89, 9607–9611 (1992).
Berger, K. H. & Isberg, R. R. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19 (1993).
Baca, O. G., Li, Y. P. & Kumar, H. Survival of the Q fever agent Coxiella burnetii in the phagolysosome. Trends Microbiol. 2, 476–480 (1994).
Gray-Owen, S. D., Dehio, C., Rudel, T., Naumann, M. & Meyer, T. F. in Principles of Bacterial Pathogenesis (ed. Groisman, E. A.) 559–618 (Academic Press, San Diego, 2001).
Acknowledgements
The authors thank J. Koehler, L. Thompson, A. Mueller and A. Camilli for comments on the manuscript. Research in the laboratories of D.S.M. and S.F. are supported by funds from the Damon Runyon Foundation and the National Institutes of Health.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Merrell, D., Falkow, S. Frontal and stealth attack strategies in microbial pathogenesis. Nature 430, 250–256 (2004). https://doi.org/10.1038/nature02760
Published:
Issue date:
DOI: https://doi.org/10.1038/nature02760
This article is cited by
-
Effect of Helicobacter pylori and Helminth Coinfection on the Immune Response to Mycobacterium tuberculosis
Current Microbiology (2021)
-
IcmF and DotU are required for the virulence of Acidovorax oryzae strain RS-1
Archives of Microbiology (2018)
-
Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes
BMC Veterinary Research (2016)
-
Vasculitis, cerebral infarction and persistent Bartonella henselae infection in a child
Parasites & Vectors (2016)
-
Ecto-5′-Nucleotidase (CD73) Regulates Host Inflammatory Responses and Exacerbates Murine Salmonellosis
Scientific Reports (2014)


