Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Frontal and stealth attack strategies in microbial pathogenesis

Abstract

Interactions between microbes and human hosts can range from a benign, even symbiotic collaboration to a competition that may turn fatal — resulting in death of the host, the microbe or both. Despite advances that have been made over the past decades in understanding microbial pathogens, more people worldwide still die every year from infectious disease than from any other cause. This highlights the relevance of continuing to probe the mechanisms used by microorganisms to cause disease, and emphasizes the need for new model systems to advance our understanding of host–pathogen interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms used by Helicobacter pylori to establish persistent infection.
Figure 2: Proposed strategies by which Bartonella establishes persistent infection.

Similar content being viewed by others

References

  1. Kaper, J. B., Fasano, A. & Trucksis, M. in Vibrio cholerae and Cholera: Molecular to Global Perspectives (eds Wachsmuth, I. K., Blake, P. A. & Olsvik, Ø.) 145–176 (ASM Press, Washington DC, 1994).

    Book  Google Scholar 

  2. Phillips, R. A. Water and electrolyte losses in cholera. Fed. Proc. 23, 705–718 (1964).

    CAS  PubMed  Google Scholar 

  3. Wilhelmi, I., Roman, E. & Sanchez-Fauquier, A. Viruses causing gastroenteritis. Clin. Microbiol. Infect. 9, 247–262 (2003).

    Article  CAS  Google Scholar 

  4. Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Schmidt, H. & Hensel, M. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17, 14–56 (2004).

    Article  CAS  Google Scholar 

  6. Cornelis, G. R. The Yersinia Ysc–Yop ‘type III’ weaponry. Nature Rev. Mol. Cell Biol. 3, 742–752 (2002).

    Article  CAS  Google Scholar 

  7. Christie, P. J. & Vogel, J. P. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360 (2000).

    Article  CAS  Google Scholar 

  8. Brake, D. A. Parasites and immune responses: memory illusion? DNA Cell Biol. 22, 405–419 (2003).

    Article  CAS  Google Scholar 

  9. Crowe, S., Zhu, T. & Muller, W. A. The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J. Leukoc. Biol. 74, 635–641 (2003).

    Article  CAS  Google Scholar 

  10. Jarvis, M. A. & Nelson, J. A. Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr. Opin. Microbiol. 5, 403–407 (2002).

    Article  CAS  Google Scholar 

  11. Johnson, W. E. & Desrosiers, R. C. Viral persistance: HIV's strategies of immune system evasion. Annu. Rev. Med. 53, 499–518 (2002).

    Article  CAS  Google Scholar 

  12. Ernst, P. B. & Gold, B. D. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol. 54, 615–640 (2000).

    Article  CAS  Google Scholar 

  13. Valenzuela, M., Cerda, O. & Toledo, H. Overview on chemotaxis and acid resistance in Helicobacter pylori. Biol. Res. 36, 429–436 (2003).

    CAS  PubMed  Google Scholar 

  14. Weeks, D. L., Eskandari, S., Scott, D. R. & Sachs, G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287, 482–485 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, M. F. Jr et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-κB activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32552–32560 (2003).

    Article  CAS  Google Scholar 

  17. Lee, S. K. et al. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5, 1345–1356 (2003).

    Article  CAS  Google Scholar 

  18. Gewirtz, A. T. et al. Helicobacter pylori flagellin evades Toll-like receptor 5-mediated innate immunity. J. Infect. Dis. 189, 1914–1920 (2004).

    Article  CAS  Google Scholar 

  19. Rhen, M., Eriksson, S., Clements, M., Bergstrom, S. & Normark, S. J. The basis of persistent bacterial infections. Trends Microbiol. 11, 80–86 (2003).

    Article  CAS  Google Scholar 

  20. Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102 (2003).

    Article  ADS  CAS  Google Scholar 

  21. Umehara, S., Higashi, H., Ohnishi, N., Asaka, M. & Hatakeyama, M. Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22, 8337–8842 (2003).

    Article  CAS  Google Scholar 

  22. Bode, G., Malfertheiner, P. & Ditschuneit, H. Pathogenetic implications of ultrastructural findings in Campylobacter pylori related gastroduodenal disease. Scand. J. Gastroenterol. Suppl. 142, 25–39 (1988).

    Article  CAS  Google Scholar 

  23. Foliguet, B., Vicari, F., Guedenet, J. C., De Korwin, J. D. & Marchal, L. Scanning electron microscopic study of Campylobacter pylori and associated gastroduodenal lesions [in French]. Gastroenterol. Clin. Biol. 13, 65B–70B (1989).

    CAS  PubMed  Google Scholar 

  24. Amieva, M. R., Salama, N. R., Tompkins, L. S. & Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690 (2002).

    Article  CAS  Google Scholar 

  25. Semino-Mora, C. et al. Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. J. Infect. Dis. 187, 1165–1177 (2003).

    Article  CAS  Google Scholar 

  26. Israel, D. A. et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl Acad. Sci. USA 98, 14625–14630 (2001).

    Article  ADS  CAS  Google Scholar 

  27. Philpott, D. J. et al. Reduced activation of inflammatory responses in host cells by mouse-adapted Helicobacter pylori isolates. Cell. Microbiol. 4, 285–296 (2002).

    Article  CAS  Google Scholar 

  28. Azuma, T. et al. Association between diversity in the Src homology 2 domain-containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. J. Infect. Dis. 189, 820–827 (2004).

    Article  CAS  Google Scholar 

  29. Aras, R. A. et al. Natural variation in populations of persistently colonizing bacteria affect human host cell phenotype. J. Infect. Dis. 188, 486–496 (2003).

    Article  CAS  Google Scholar 

  30. Loughlin, M. F., Barnard, F. M., Jenkins, D., Sharples, G. J. & Jenks, P. J. Helicobacter pylori mutants defective in RuvC Holliday junction resolvase display reduced macrophage survival and spontaneous clearance from the murine gastric mucosa. Infect. Immun. 71, 2022–2031 (2003).

    Article  CAS  Google Scholar 

  31. Wain, J. et al. Molecular typing of multiple-antibiotic-resistant Salmonella enterica serovar Typhi from Vietnam: application to acute and relapse cases of typhoid fever. J. Clin. Microbiol. 37, 2466–2472 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Levine, M. M., Black, R. E. & Lanata, C. Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J. Infect. Dis. 146, 724–726 (1982).

    Article  CAS  Google Scholar 

  33. Wain, J. et al. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J. Clin. Microbiol. 39, 1571–1576 (2001).

    Article  CAS  Google Scholar 

  34. Sinnott, C. R. & Teall, A. J. Persistent gallbladder carriage of Salmonella typhi. Lancet 1 (8539), 976 (1987).

    Article  CAS  Google Scholar 

  35. Monack, D. M., Bouley, D. M. & Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J. Exp. Med. 199, 231–241 (2004).

    Article  CAS  Google Scholar 

  36. Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993).

    Article  CAS  Google Scholar 

  37. Merrell, D. S. & Camilli, A. Information overload: assigning genetic functionality in the age of genomics and large-scale screening. Trends Microbiol. 10, 571–574 (2002).

    Article  CAS  Google Scholar 

  38. Koehler, J. E. in Persistent Bacterial Infections (eds Nataro, J. M. & Blaser, M. J.) 339–353 (ASM Press, Washington DC, 2000).

    Book  Google Scholar 

  39. Koehler, J. E., Glaser, C. A. & Tappero, J. W. Rochalimaea henselae infection. A new zoonosis with the domestic cat as reservoir. J. Am. Med. Assoc. 271, 531–535 (1994).

    Article  CAS  Google Scholar 

  40. Schulein, R. et al. Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J. Exp. Med. 193, 1077–1086 (2001).

    Article  CAS  Google Scholar 

  41. Koehler, J. E., Quinn, F. D., Berger, T. G., LeBoit, P. E. & Tappero, J. W. Isolation of Rochalimaea species from cutaneous and osseous lesions of bacillary angiomatosis. N. Engl. J. Med. 327, 1625–1631 (1992).

    Article  CAS  Google Scholar 

  42. Koesling, J., Aebischer, T., Falch, C., Schulein, R. & Dehio, C. Cutting edge: antibody-mediated cessation of hemotropic infection by the intraerythrocytic mouse pathogen Bartonella grahamii. J. Immunol. 167, 11–14 (2001).

    Article  CAS  Google Scholar 

  43. Capo, C., Amirayan-Chevillard, N., Brouqui, P., Raoult, D. & Mege, J. L. Bartonella quintana bacteremia and overproduction of interleukin-10: model of bacterial persistence in homeless people. J. Infect. Dis. 187, 837–844 (2003).

    Article  Google Scholar 

  44. Urban, B. C. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Schulein, R. & Dehio, C. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol. Microbiol. 46, 1053–1067 (2002).

    Article  CAS  Google Scholar 

  46. Watarai, M., Makino, S. & Shirahata, T. An essential virulence protein of Brucella abortus, VirB4, requires an intact nucleoside-triphosphate-binding domain. Microbiology 148, 1439–1446 (2002).

    Article  CAS  Google Scholar 

  47. Jenkins, M. K. et al. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23–45 (2001).

    Article  CAS  Google Scholar 

  48. Mascie-Taylor, C. G. & Karim, E. The burden of chronic disease. Science 302, 1921–1922 (2003).

    Article  ADS  Google Scholar 

  49. Gubler, D. J. Resurgent vector-borne diseases as a global health problem. Emerg. Infect. Dis. 4, 442–450 (1998).

    Article  CAS  Google Scholar 

  50. Hilbi, H. et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32895–32900 (1998).

    Article  CAS  Google Scholar 

  51. Geng, Y. et al. Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. J. Immunol. 164, 5522–5529 (2000).

    Article  CAS  Google Scholar 

  52. Danelishvili, L., McGarvey, J., Li, Y. J. & Bermudez, L. E. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell. Microbiol. 5, 649–660 (2003).

    Article  CAS  Google Scholar 

  53. Braun, M. C., He, J., Wu, C. Y. & Kelsall, B. L. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor β1 and β2 chain expression. J. Exp. Med. 189, 541–552 (1999).

    Article  CAS  Google Scholar 

  54. Vistica, B. P., McAllister, C. G., Sekura, R. D., Ihle, J. N. & Gery, I. Dual effects of pertussis toxin on lymphoid cells in culture. Cell. Immunol. 101, 232–241 (1986).

    Article  CAS  Google Scholar 

  55. Mu, H. H. & Sewell, W. A. Enhancement of interleukin-4 production by pertussis toxin. Infect. Immun. 61, 2834–2840 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Thern, A., Stenberg, L., Dahlback, B. & Lindahl, G. Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system. J. Immunol. 154, 375–386 (1995).

    CAS  PubMed  Google Scholar 

  57. Grenier, D. Inactivation of human serum bactericidal activity by a trypsinlike protease isolated from Porphyromonas gingivalis. Infect. Immun. 60, 1854–1857 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Peterson, P. K., Verhoef, J., Sabath, L. D. & Quie, P. G. Effect of protein A on staphylococcal opsonization. Infect. Immun. 15, 760–764 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bjorck, L. Protein L. A novel bacterial cell wall protein with affinity for Ig L chains. J. Immunol. 140, 1194–1197 (1988).

    CAS  PubMed  Google Scholar 

  60. Stenger, S., Niazi, K. R. & Modlin, R. L. Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J. Immunol. 161, 3582–3588 (1998).

    CAS  PubMed  Google Scholar 

  61. Krall, R., Schmidt, G., Aktories, K. & Barbieri, J. T. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect. Immun. 68, 6066–6068 (2000).

    Article  CAS  Google Scholar 

  62. Barbieri, J. T. Pseudomonas aeruginosa exoenzyme S, a bifunctional type-III secreted cytotoxin. Int. J. Med. Microbiol. 290, 381–387 (2000).

    Article  CAS  Google Scholar 

  63. Marra, A., Blander, S. J., Horwitz, M. A. & Shuman, H. A. Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc. Natl Acad. Sci. USA 89, 9607–9611 (1992).

    Article  ADS  CAS  Google Scholar 

  64. Berger, K. H. & Isberg, R. R. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19 (1993).

    Article  CAS  Google Scholar 

  65. Baca, O. G., Li, Y. P. & Kumar, H. Survival of the Q fever agent Coxiella burnetii in the phagolysosome. Trends Microbiol. 2, 476–480 (1994).

    Article  CAS  Google Scholar 

  66. Gray-Owen, S. D., Dehio, C., Rudel, T., Naumann, M. & Meyer, T. F. in Principles of Bacterial Pathogenesis (ed. Groisman, E. A.) 559–618 (Academic Press, San Diego, 2001).

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank J. Koehler, L. Thompson, A. Mueller and A. Camilli for comments on the manuscript. Research in the laboratories of D.S.M. and S.F. are supported by funds from the Damon Runyon Foundation and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merrell, D., Falkow, S. Frontal and stealth attack strategies in microbial pathogenesis. Nature 430, 250–256 (2004). https://doi.org/10.1038/nature02760

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature02760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing