Abstract
Therapeutic vaccines derived from carbohydrate antigen–adjuvant combinations are a promising approach for cancer immunotherapy. One of the critical limitations in this area is access to sufficient quantities of tumour-associated carbohydrate antigens and glycoconjugate adjuvants. At present, availability of the complex oligosaccharide constructs that are needed for the systematic design and evaluation of novel vaccine formulations relies on de novo chemical synthesis. The use of both state-of-the-art and emerging glycosylation technologies has led to significant advances in this field, allowing the clinical exploration of carbohydrate-based antigens in the treatment of cancer.
Enjoying our latest content?
Log in or create an account to continue
- Access the most recent journalism from Nature's award-winning team
- Explore the latest features & opinion covering groundbreaking research
or
References
Feizi, T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314, 53–57 (1985).
Livingston, P. O. Approaches to augmenting the immunogenicity of melanoma gangliosides: from whole melanoma cells to ganglioside–KLH conjugate vaccines. Immunol. Rev. 145, 147–166 (1995).
Hakomori, S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309–5318 (1996).
Fung, P. Y., Madej, M., Koganty, R. R. & Longenecker, B. M. Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate. Cancer Res. 50, 4308–4314 (1990).
Slovin, S. F., Keding, S. J. & Ragupathi, G. Carbohydrate vaccines as immunotherapy for cancer. Immunol. Cell Biol. 83, 418–428 (2005).
Ouerfelli, O., Warren, J. D., Wilson, R. M. & Danishefsky, S. J. Synthetic carbohydrate-based antitumor vaccines: challenges and opportunities. Expert Rev. Vaccines 4, 677–685 (2005).
Helling, F. et al. GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res. 54, 197–203 (1994).
Helling, F. et al. GM2–KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res. 55, 2783–2788 (1995).
Kensil, C. R., Patel, U., Lennick, M. & Marciani, D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J. Immunol. 146, 431–437 (1991).
Ragupathi, G. Carbohydrate antigens as targets for active specific immunotherapy. Cancer Immunol. Immunother. 43, 152–157 (1996).
Livingston, P. O. et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J. Clin. Oncol. 12, 1036–1044 (1994).
MacLean, G. D., Reddish, M. A., Koganty, R. R. & Longenecker, B. M. Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccine. J. Immunother. Emphasis Tumor Immunol. 19, 59–68 (1996).
Slovin, S. F. et al. Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc. Natl Acad. Sci. USA 96, 5710–5715 (1999).
Ragupathi, G. et al. Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int. J. Cancer 85, 659–666 (2000).
Ragupathi, G. et al. Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin. Cancer Res. 9, 5214–5220 (2003).
Slovin, S. F. et al. Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with α-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. J. Clin. Oncol. 21, 4292–4298 (2003).
Krug, L. M. et al. Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin. Cancer Res. 10, 6094–6100 (2004).
Slovin, S. F. et al. Thomsen–Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol. Immunother. 54, 694–702 (2005).
Ragupathi, G., Gathuru, J. & Livingston, P. Antibody inducing polyvalent cancer vaccines. Cancer Treat. Res. 123, 157–180 (2005).
Livingston, P. O. & Ragupathi, G. Cancer vaccines targeting carbohydrate antigens. Hum. Vaccin. 2, 137–143 (2006).
Toyokuni, T. & Singhal, A. K. Synthetic carbohydrate vaccines based on tumour-associated antigens. Chem. Soc. Rev. 231–242 (1995).
Danishefsky, S. J. & Allen, J. R. From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew. Chem. Int. Ed. Engl. 39, 836–863 (2000).
Brocke, C. & Kunz, H. Synthesis of tumor-associated glycopeptide antigens. Bioorg. Med. Chem. 10, 3085–3112 (2002).
Buskas, T., Ingale, S. & Boons, G. J. Glycopeptides as versatile tools for glycobiology. Glycobiology 16, 113R–136R (2006).
Paulsen, H. Advances in stereoselective chemical syntheses of complex oligosaccharides. Angew. Chem. Int. Ed. Engl. 21, 155–224 (1982).
Sinay, P. Recent advances in glycosylation reactions. Pure Appl. Chem. 63, 519–528 (1991).
Toshima, K. & Tatsuta, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem. Rev. 93, 1503–1531 (1993).
Schmidt, R. R. & Kinzy, W. Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem. 50, 21–123 (1994).
Garegg, P. J. Thioglycosides as glycosyl donors in oligosaccharide synthesis. Adv. Carbohydr. Chem. Biochem. 52, 179–205 (1997).
Davis, B. G. Recent developments in oligosaccharide synthesis. J. Chem. Soc. Perkin Trans. I 1, 2137–2160 (2000).
Hanessian, S. & Lou, B. Stereocontrolled glycosyl transfer reactions with unprotected glycosyl donors. Chem. Rev. 100, 4443–4464 (2000).
Nicolaou, K. C. & Mitchell, H. J. Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew. Chem. Int. Ed. Engl. 40, 1576–1624 (2001).
Danishefsky, S. J. & Bilodeau, M. T. Glycals in organic synthesis: the evolution of comprehensive strategies for the assembly of oligosaccharides and glycoconjugates of biological consequence. Angew. Chem. Int. Ed. Engl. 35, 1380–1419 (1996).
Di Bussolo, V., Kim, Y.-J. & Gin, D. Y. Direct oxidative glycosylations with glycal donors. J. Am. Chem. Soc. 120, 13515–13516 (1998).
Shi, L., Kim, Y. J. & Gin, D. Y. C2-acyloxyglycosylation with glycal donors. J. Am. Chem. Soc. 123, 6939–6940 (2001).
Lemieux, R. U. & Ratcliffe, R. M. The azidonitration of tri-O-acetyl-D-galactal. Can. J. Chem. 57, 1244–1251 (1979).
Kan, C. et al. Photo amidoglycosylation of an allal azidoformate. Synthesis of β-2-amido allopyranosides. Org. Lett. 3, 381–384 (2001).
Di Bussolo, V., Liu, J., Huffman, L. G. & Gin, D. Y. Acetamidoglycosylation with glycal donors: a one-pot glycosidic coupling with direct installation of the natural C(2)-N-acetylamino functionality. Angew. Chem. Int. Ed. Engl. 39, 204–207 (2000).
Kannagi, R. et al. New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J. Biol. Chem. 258, 8934–8942 (1983).
Bremer, E. G. et al. Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland. J. Biol. Chem. 259, 14773–14777 (1984).
Hakomori, S. & Zhang, Y. Glycosphingolipid antigens and cancer therapy. Chem. Biol. 4, 97–104 (1997).
Bilodeau, M. T. et al. Total synthesis of a human breast tumor associated antigen. J. Am. Chem. Soc. 117, 7840–7841 (1995).
Park, T. K. et al. Total synthesis and proof of structure of a human breast tumor (globo-H) antigen. J. Am. Chem. Soc. 118, 11488–11500 (1996).
Zhu, T. & Boons, G.-J. A two-directional and highly convergent approach for the synthesis of the tumor-associated antigen globo-H. Angew. Chem. Int. Ed. Engl. 38, 3495–3497 (1999).
Douglas, N. L., Ley, S. V., Lucking, U. & Warriner, S. L. Tuning glycoside reactivity: new tool for efficient oligosaccharide synthesis. J. Chem. Soc. Perkin Trans. I 1, 51–66 (1998).
Burkhart, F., Zhang, Z., Wacowich-Sgarbi, S. & Wong, C.-H. Synthesis of the Globo H hexasaccharide using the programmable reactivity-based one-pot strategy. Angew. Chem. Int. Ed. Engl. 40, 1274–1277 (2001).
Zhang, Z. et al. Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 121, 734–753 (1999).
Huang, C. Y. et al. Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc. Natl Acad. Sci. USA 103, 15–20 (2006).
Lassaletta, J. & Schmidt, R. R. Glycosyl imidates. Part 75. Synthesis of the hexasaccharide moiety of globo H (human breast cancer) antigen. Liebigs Ann. 1417–1423 (1996).
Bosse, F., Marcaurelle, L. A. & Seeberger, P. H. Linear synthesis of the tumor-associated carbohydrate antigens Globo-H, SSEA-3, and Gb3. J. Org. Chem. 67, 6659–6670 (2002).
Hakomori, S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer. Res. 52, 257–331 (1989).
Boons, G.-J. & Demchenko, A. V. Recent advances in O-sialylation. Chem. Rev. 100, 4539–4565 (2000).
Haberman, J. M. & Gin, D. Y. Dehydrative sialylation with C2-hemiketal sialyl donors. Org. Lett. 5, 2539–2541 (2003).
Castro-Palomino, J. C. et al. Efficient synthesis of ganglioside GM2 for use in cancer vaccines. Angew. Chem. Int. Ed. Engl. 36, 1998–2001 (1997).
Gordon, J. E. & Turrell, G. C. Observations on N-methylacetonitrilium and N-phenylbenzonitrilium hexachloroantimonates. J. Org. Chem. 24, 269–271 (1959).
Schmidt, R. R. & Ruecker, E. Stereoselective glycosidations of uronic acids. Tetrahedron Lett. 21, 1421–1424 (1980).
Hasegawa, A. et al. Synthetic studies on sialoglycoconjugates 25: reactivity of glycosyl promoters in α-glycosylation of N-acetylneuraminic acid with the primary and secondary hydroxyl groups in the suitably protected galactose and lactose derivatives. J. Carbohydr. Chem. 10, 493–498 (1991).
De Meo, C., Demchenko, A. V. & Boons, G. J. A stereoselective approach for the synthesis of α-sialosides. J. Org. Chem. 66, 5490–5497 (2001).
Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nature Rev. Cancer 4, 45–60 (2004).
Hilkens, J., Ligtenberg, M. J., Vos, H. L. & Litvinov, S. V. Cell membrane-associated mucins and their adhesion-modulating property. Trends Biochem. Sci. 17, 359–363 (1992).
Müller, S. & Hanisch, F. G. Recombinant MUC1 probe authentically reflects cell-specific O-glycosylation profiles of endogenous breast cancer mucin. High density and prevalent core 2-based glycosylation. J. Biol. Chem. 277, 26103–26112 (2002).
Marcos, N. T. et al. Polypeptide GalNAc-transferases, ST6GalNAc-transferase I, and ST3Gal-transferase I expression in gastric carcinoma cell lines. J. Histochem. Cytochem. 51, 761–771 (2003).
Banoub, J., Boullanger, P. & Lafont, D. Synthesis of oligosaccharides of 2-amino-2-deoxy sugars. Chem. Rev. 92, 1167–1195 (1992).
Liebe, B. & Kunz, H. Solid-phase synthesis of a tumor-associated sialyl-TN antigen glycopeptide with a partial sequence of the 'tandem repeat' of the MUC-1 mucin. Angew. Chem. Int. Ed. Engl. 36, 618–621 (1997).
Kunz, H. & Birnbach, S. Synthesis of tumor associated TN- and T-antigen type O-glycopeptides and their conjugation to bovine serum albumin. Angew. Chem. Int. Ed. Engl. 98, 360–362 (1986).
Sames, D., Chen, X. T. & Danishefsky, S. J. Convergent total synthesis of a tumour-associated mucin motif. Nature 389, 587–591 (1997).
Paulsen, H., Rauwald, W. & Weichert, U. Building units of oligosaccharides. LXXXVI. Glycosidation of oligosaccharide thioglycosides to O-glycoprotein segments. Liebigs Ann. 75–86 (1988).
George, S. K. et al. Chemoenzymatic synthesis of sialylated glycopeptides derived from mucins and T-cell stimulating peptides. J. Am. Chem. Soc. 123, 11117–11125 (2001).
Svarovsky, S. A. & Barchi, J. J. Highly efficient preparation of tumor antigen-containing glycopeptide building blocks from novel pentenyl glycosides. Carbohydr. Res. 338, 1925–1935 (2003).
Rademann, J. & Schmidt, R. R. Solid-phase synthesis of a glycosylated hexapeptide of human sialophorin, using the trichloroacetimidate method. Carbohydr. Res. 269, 217–225 (1995).
Paulsen, H., Peters, S., Bielfeldt, T., Meldal, M. & Bock, K. Synthesis of the glycosyl amino acids Nα-Fmoc-Ser[Ac4-β-D-Gal p-(1 → 3)-Ac2-α-D-GalN3 p]-OPfp and Nα-Fmoc-Thr[Ac4-β-D-Gal p-(1 → 3)-Ac2-α-D-GalN3 p]-OPfp and the application in the solid-phase peptide synthesis of multiply glycosylated mucin peptides with Tn and T antigenic structures. Carbohydr. Res. 268, 17–34 (1995).
Nakahara, Y., Nakahara, Y. & Ogawa, T. Solid-phase synthesis of an O-linked glycopeptide based on a benzyl-protected glycan approach. Carbohydr. Res. 292, 71–81 (1996).
Winterfeld, G. A., Khodair, A. I. & Schmidt, R. R. O-glycosyl amino acids by 2-nitrogalactal concatenation — synthesis of a mucin-type O-glycan. Eur. J. Org. Chem. 1009–1021 (2003).
Elofsson, M., Salvador, L. A. & Kihlberg, J. Preparation of Tn and sialyl Tn building blocks used in Fmoc solid-phase synthesis of glycopeptide fragments from HIV gp120. Tetrahedron 53, 369–390 (1997).
Seitz, O. & Kunz, H. A novel allylic anchor for solid-phase synthesis — synthesis of protected and unprotected O-glycosylated mucin-type glycopeptides. Angew. Chem. Int. Ed. Engl. 34, 803–805 (1995).
Dziadek, S., Hobel, A., Schmitt, E. & Kunz, H. A fully synthetic vaccine consisting of a tumor-associated glycopeptide antigen and a T-cell epitope for the induction of a highly specific humoral immune response. Angew. Chem. Int. Ed. Engl. 44, 7630–7635 (2005).
Dziadek, S., Brocke, C. & Kunz, H. Biomimetic synthesis of the tumor-associated (2,3)-sialyl-T antigen and its incorporation into glycopeptide antigens from the mucins MUC1 and MUC4. Chem. Eur. J. 10, 4150–4162 (2004).
Kensil, C. R. Saponins as vaccine adjuvants. Crit. Rev. Ther. Drug Carrier Syst. 13, 1–55 (1996).
Jacobsen, N. E. et al. Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr. Res. 280, 1–14 (1996).
Zhu, X., Yu, B., Hui, Y. & Schmidt, R. R. Synthesis of the trisaccharide and tetrasaccharide moieties of the potent immunoadjuvant QS-21. Eur. J. Org. Chem. 965–973 (2004).
Nukada, T., Berces, A., Zgierski, M. Z. & Whitfield, D. M. Exploring the mechanism of neighboring group assisted glycosylation reactions. J. Am. Chem. Soc. 120, 13291–13295 (1998).
Kim, Y.-J. et al. Synthetic studies of complex immunostimulants from Quillaja saponaria: synthesis of the potent clinical immunoadjuvant QS-21Aapi . J. Am. Chem. Soc. 128, 11906–11915 (2006).
Garcia, B. A. & Gin, D. Y. Dehydrative glycosylation with activated diphenyl sulfonium reagents. Scope, mode of C(1)-hemiacetal activation, and detection of reactive glycosyl intermediates. J. Am. Chem. Soc. 122, 4269–4279 (2000).
Ishihara, K. & Yamamoto, H. Arylboron compounds as acid catalysts in organic synthetic transformations. Eur. J. Org. Chem. 527–538 (1999).
Nores, G. A., Dohi, T., Taniguchi, M. & Hakomori, S. Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. J. Immunol. 139, 3171–3176 (1987).
Zhang, S. et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int. J. Cancer 73, 50–56 (1997).
Ragupathi, G. et al. Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates. J. Am. Chem. Soc. 128, 2715–2725 (2006).
Lo-Man, R. et al. A fully synthetic therapeutic vaccine candidate targeting carcinoma-associated Tn carbohydrate antigen induces tumor-specific antibodies in nonhuman primates. Cancer Res. 64, 4987–4994 (2004).
Grigalevicius, S. et al. Chemoselective assembly and immunological evaluation of multiepitopic glycoconjugates bearing clustered Tn antigen as synthetic anticancer vaccines. Bioconjug. Chem. 16, 1149–1159 (2005).
Svarovsky, S. A., Szekely, Z. & Barchi, J. J. Synthesis of gold nanoparticles bearing the Thomsen–Friedenreich disaccharide: a new multivalent presentation of an important tumor antigen. Tetrahedron Asymmetry 16, 587–598 (2005).
Jiang, Z. H. & Koganty, R. R. Synthetic vaccines: the role of adjuvants in immune targeting. Curr. Med. Chem. 10, 1423–1439 (2003).
Buskas, T., Ingale, S. & Boons, G. J. Towards a fully synthetic carbohydrate-based anticancer vaccine: synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated tn antigen. Angew. Chem. Int. Ed. Engl. 44, 5985–5988 (2005).
Marciani, D. J. et al. Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity. Vaccine 18, 3141–3151 (2000).
Marciani, D. J. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov. Today 8, 934–943 (2003).
Acknowledgements
We thank P. O. Livingston for assistance in proof-reading this article. Research on carbohydrate synthesis in the laboratory of D.Y.G. is supported by the National Institutes of Health.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Galonić, D., Gin, D. Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines. Nature 446, 1000–1007 (2007). https://doi.org/10.1038/nature05813
Published:
Issue date:
DOI: https://doi.org/10.1038/nature05813
This article is cited by
-
The impact of sugar and fatty acid on the bioactivity of N-fatty acyl-L-tyrosine aglycone
Journal of Chemical Sciences (2017)
-
Optimization of Release Conditions for Acetylated Amino Sugars from Glycoprotein with the Aid of Experimental Design and Their Sensitive Determination with HPLC
Chromatographia (2017)
-
Synthesis and characterization of four novel 2-(trimethylsilyl)ethyl glycosides
Research on Chemical Intermediates (2015)
-
Synthesis and NMR elucidation of four novel 2-(trimethylsilyl)ethyl glycosides
Research on Chemical Intermediates (2014)
-
A Tn antigen binding lectin from Myrsine coriacea displays toxicity in human cancer cell lines
Journal of Natural Medicines (2013)