Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection and application of peptide-binding peptides

Abstract

Peptide-binding ligands would be useful for directing reagents to particular epitopes in a protein, the detection of peptide hormones, and many other applications. Here we show that peptides of modest size isolated from a library using a simple genetic assay can act as specific receptors for other peptides. The equilibrium dissociation constants of these peptide–peptide complexes are higher than those of typical monoclonal antibody–epitope complexes. Nonetheless, as shown here, these peptide-binding peptides can be used to detect or purify proteins containing the partner peptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Results of a selection for peptides that bind the target peptide NEAYVHDGPVRSLN, called ICS (see text for details).
Figure 3: Determination of the Kd of the LEPB-ICS complex.
Figure 4: A far western blot reveals direct interactions between the ICS and the LEPs selected from the chicken library.
Figure 5: Purification of GST–13-mer by affinity chromatography using immobilized MBP–LEP27.

Similar content being viewed by others

References

  1. Schneider, S. et al. Mutagenesis and selection of PDZ domains that bind new protein targets. Nat. Biotechnol. 17, 170– 175 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Dong, D.L., Liu, R., Sherlock, R., Wigler, M.H. & Nestler, H.P. Molecular forceps from combinatorial libraries prevent the farnesylation of Ras by binding to its carboxyl terminus. Chem. Biol. 6, 133–141 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  3. Hossain, M.A. & Schneider, H.-J. Sequence-selective evaluation of peptide side-chain interaction. New artificial receptors for selective recognition in water. J. Am. Chem. Soc. 120, 11208–11209 (1998).

    Article  CAS  Google Scholar 

  4. Still, W.C. Discovery of sequence-selective peptide binding by synthetic receptors using encoded combinatorial libraries. Accounts of Chemical Research. 29, 155–163 ( 1996).

    Article  CAS  Google Scholar 

  5. Burger, M.T. & Still, W.C. Simple structural requirements for sequence-selective peptide receptors? Tripeptide binding by a podand ionophore . J. Org. Chem. 62, 4785– 4790 (1997).

    Article  CAS  Google Scholar 

  6. Chen, C.-T., Wagner, H. & Still, W.C. Fluorescent, sequence-selective peptide detection by synthetic small molecules. Science 279, 851– 853 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, Y., Suenaga, T. & Still, W.C. Sequence-selective peptide binding with peptido-A,B-trans-steroidal receptor selected from an encoded combinatorial receptor library. J. Am. Chem. Soc. 118, 1813–1814 (1996).

    Article  CAS  Google Scholar 

  8. Hioki, H. & Still, W.C. Chemical evolution: a model system that selects and amplifies a receptor for the tripeptide (D)Pro(L)Val(D)Val . J. Org. Chem. 63, 904– 905 (1998).

    Article  CAS  Google Scholar 

  9. Ohlmeyer, M.H. et al. Complex synthetic chemical libraries indexed with molecular tags. Proc. Natl. Acad. Sci. USA 90, 10922 –10926 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shao, Y. & Still, W.C. Sequence-selective receptors of peptides. A simple molecular design for construction of large combinatorial libraries of receptors. J. Org. Chem. 61, 6086–6087 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Hu, J., O'Shea, E.K., Kim, P.S. & Sauer, R.T. Sequence requirements for coiled-colis: analysis with lambda Repressor-GCN4 leucine zipper fusions . Science 250, 1400–1403 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, J.C. Repressor fusions as a tool to study protein-protein interactions. Structure 3, 431–433 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  13. Cairns, M.T., Green, A.J., White, P.M., Johnston, P.G. & Brenner, S. A novel bacterial vector system for monitoring protein-protein interactions in the cAMP-dependent protein kinase complex. Gene 185, 5–9 (1997 ).

    Article  CAS  PubMed  Google Scholar 

  14. Jappelli, R. & Brenner, S. Interaction between cAMP-dependent protein kinase catalytic subunit and peptide inhibitors analyzed with λ repressor fusions. J. Mol. Biol. 259, 575 –578 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Bunker, C.A. & Kingston, R.E. Identification of a cDNA for SSRP1, an HMG-box protein, by interaction with the c-Myc oncoprotein in a novel bacterial expression screen. Nucleic Acids Res. 23, 269–276 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ptashne, M.A Genetic switch. Gene control and phage lambda, 18– 20 (Cell Press, Cambridge, MA; 1987).

    Google Scholar 

  17. Howard, A.D. et al. IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1β precursor at two distinct sites and does not cleave 31-kDa IL-1α. J. Immunol. 147, 2964–2969 (1991).

    CAS  PubMed  Google Scholar 

  18. Zhang, Z., Murphy, A., Hu, J.C. & Kodadek, T. Genetic selection of short peptides that support protein oligomerization in vivo. Curr. Biol. 9, 417–420 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  19. Ellenberger, T.E., Brandl, C.J., Struhl, K. & Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71, 1223–1237 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Fields, S. & Song, O.-K. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Phizicky, E.M. & Fields, S. Protein-protein interactions: methods for detection and analysis. Microbiol. Rev. 59, 94–123 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Drees, B.L. Progress and variations in two-hybrid and three-hybrid technologies. Curr. Opin. in Chem. Biol. 3, 64–70 (1999).

    Article  CAS  Google Scholar 

  23. Miller, J. Experiments in molecular genetics, (Cold Spring Harbor Press, Plainview, NY; 1972).

    Google Scholar 

  24. Parks, T.D., Leuther, K.K., Howard, E.D., Johnston, S.A. & Dougherty, W.G. Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal. Biochem. 216, 413–417 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Freifelder, D. Physical biochemistry. Applications to biochemistry and molecular biology 654–658 (W.H. Freeman, New York; 1982).

    Google Scholar 

Download references

Acknowledgements

We thank Prof. James Hu (Texas A& M University) for many helpful discussions and for providing plasmids, phage, and bacterial strains. We also thank Liping Sun for providing purified S10-tagged Pho4 protein. This work was supported by grants from the Welch Foundation (I-1299) and the Texas Advanced Research Program (ARP 373) to T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kodadek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zhu, W. & Kodadek, T. Selection and application of peptide-binding peptides. Nat Biotechnol 18, 71–74 (2000). https://doi.org/10.1038/71951

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/71951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing