Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scanning of guanine–guanine mismatches in DNA by synthetic ligands using surface plasmon resonance

Abstract

Here we have designed and synthesized ligands that specifically bind with high affinity (Kd = 53 nM) to the guanine (G)–guanine mismatch, one of four types of single-nucleotide polymorphism (SNP). Detection of the G-G mismatch was performed by a surface plasmon resonance (SPR) assay using a sensor chip carrying the G-G specific ligand on its surface. The accuracy of the G-G mismatch detection by the SPR sensor was demonstrated by a marked SPR response obtained only for the DNA containing the G-G mismatch. DNAs containing G-A and G-T mismatches, as well as a fully matched duplex, produced only a weak response. Furthermore, this assay was found applicable for the detection of SNP existing in PCR amplification products of a 652-nucleotide sequence of the HSP70-2 gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular design of a ligand that selectively binds to the G-G mismatch.
Figure 2: DNase I footprinting analysis of the complex of ligand 1 and 5′-32P-end-labeled 64-mer DNA duplex containing G-G, G-A, and G-T mismatched sites.
Figure 3: Illustrations of SPR assay by a sensor chip with covalently immobilized ligand 2 on its surface.
Figure 4: Typical response features (sensorgrams) of the specific binding of DNA containing a G-G mismatch to the 2-immobilized SPR sensor.

Similar content being viewed by others

References

  1. Schafer, A.J. & Hawkins, J.R. DNA variation and the future of human genetics. Nat. Biotechnol. 16, 33–39 (1998).

    Article  CAS  Google Scholar 

  2. Collins, F.S., Guyer, M.S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580– 1581 (1997).

    Article  CAS  Google Scholar 

  3. Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  Google Scholar 

  4. Marshall, A. & Hodgson, J. DNA chips: an array of possibilities. Nat. Biotechnol. 16, 27 –31 (1998).

    Article  CAS  Google Scholar 

  5. The chipping forecast. Nat. Genet. 21 (suppl.), 1–60 (1999 ).

  6. Shumaker, J.M., Metspalu, A. & Caskey, C.T. Mutation detection by solid-phase primer extension. Hum. Mutat. 7, 346– 354 (1996).

    Article  CAS  Google Scholar 

  7. Pastinen, T., Kurg, A., Metspalu, A., Peltonen, L. & Syvanen, A.C. Minisequencing–a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7, 606–614 ( 1997).

    Article  CAS  Google Scholar 

  8. Grompe, M. The rapid detection of unknown mutations in nucleic acids. Nat. Genet. 5 111–117 ( 1993).

    Article  CAS  Google Scholar 

  9. Mashal, R.D. & Sklar, J. Practical methods of mutation detection. Curr. Opin. Genet. Dev. 6, 275–280 (1996).

    Article  CAS  Google Scholar 

  10. Cotton, R.G.H. Mutation detection. (Oxford University Press, New York; 1997).

    Google Scholar 

  11. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766– 2770 (1989).

    Article  CAS  Google Scholar 

  12. Fischer, S.G. & Lerman, L.S. DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583 ( 1983).

    Article  CAS  Google Scholar 

  13. Riesner, D. et al. Temperature-gradient gel electrophresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein–nucleic acid interactions. Electrophoresis 10, 377 –389 (1989).

    Article  CAS  Google Scholar 

  14. Marth, G.T. et al. A general approach to single-nucleotide polymorphism discovery . Nat. Genet. 23, 452–456 (1999).

    Article  CAS  Google Scholar 

  15. Laken, S.J. et al. Genotyping by mass spectrometric analysis of short DNA fragments . Nat. Biotechnol. 16, 1352– 1356 (1999).

    Article  Google Scholar 

  16. Taillon-Miller, P., Piernot, E.E. & Kwok, P.Y. Efficient approach to unique single-nucleotide polymorphism discovery. Genom. Res. 9, 499 –505 (1999).

    CAS  Google Scholar 

  17. Woodson, S.A. & Crothers, D.M. Binding of 9-aminoacridine to bulged-base DNA oligomers from a frame-shift hot spot. Biochemistry 27, 8904–8914 ( 1988).

    Article  CAS  Google Scholar 

  18. Williams, L.D. & Goldberg, I.H. Selective strand scission by intercalating drugs at DNA bulges. Biochemistry 27, 3004–3011 ( 1988).

    Article  CAS  Google Scholar 

  19. Nakatani, K., Okamoto, A. & Saito, I. Specific alkylation of guanine opposite to a single nucleotide bulge: a chemical probe for bulged structure of DNA. Angew. Chem. Int. Edn. 38, 3378–3381 (1999).

    Article  CAS  Google Scholar 

  20. Nakatani, K., Sando, S. & Saito, I. Recognition of a single guanine bulge by 2-acylamino-1,8-naphthyridine, J. Am. Chem. Soc. 122, 2172– 2177 (2000).

    Article  CAS  Google Scholar 

  21. Brenowitz, M., Senear, D.F. ; Shea, M.A. & Ackers, G.K. Quantitative DNase footprint titration–a method for studying protein–DNA interactions. Methods Enzymol. 130, 132– 181 (1986).

    Article  CAS  Google Scholar 

  22. Pharmacia-Biosensor. Biacore user's manual. (Piscatway; NJ, 1990).

  23. Fivash, M., Towler, E.M. & Fisher, R.J. BIAcore for macromolecular interaction. Curr. Opin. Biotechnol. 9, 97–101 (1998).

    Article  CAS  Google Scholar 

  24. Nilsson, P. et al. Detection of mutations in PCR products from clinical samples by surface plasmon resonance. J. Mol. Recog. 10, 7–17 (1997).

    Article  CAS  Google Scholar 

  25. Nakatani, K., Okamoto, A., Matsuno, T. & Saito, I. Highly selective DNA alkylation at 5′ side G of 5′GG3′ sequence by an aglycon model of pluramycin antibiotics through preferential intercalation into GG step. J. Am. Chem. Soc. 120, 11219 –11225 (1998).

    Article  CAS  Google Scholar 

  26. Milner, C.M. & Campbell, R.D. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32, 242–251 (1990).

    Article  CAS  Google Scholar 

  27. Nataraj, A.J., Olivos-Glander, I., Kusukawa, N. & Highsmith, W.E. Jr. Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis 20, 1177–1185 ( 1999).

    Article  CAS  Google Scholar 

  28. Taylor, G.R. Enzymatic and chemical cleavage methods. Electrophoresis 20, 1125–1130 (1999).

    Article  CAS  Google Scholar 

  29. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92 (1996).

    Article  CAS  Google Scholar 

  30. Parihk, S.S. et al. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17, 5214–5226 ( 1998).

    Article  Google Scholar 

  31. Lau, A.Y., Schärer, O.D., Samson, L., Verdine, G.L. & Ellenberger, T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell 95, 249 –258 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Yusuke Nakamura, Dr. Toshihiro Tanaka, Dr. Tatsuhiko Tsunoda, and Dr. Yozo Ohnishi of the Institute of Medical Science, University of Tokyo, for generous gift of PCR products of the HSP70-2 gene. We also thank Dr. Junichi Mineno of Takara Shuzo Co., Ltd. for kind support of our experiments. This work was supported in part by a grant-in-aid for creative basic research (genome science) and for scientific research on priority areas (C) “medical genome science” from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Nakatani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatani, K., Sando, S. & Saito, I. Scanning of guanine–guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nat Biotechnol 19, 51–55 (2001). https://doi.org/10.1038/83505

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/83505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing