Abstract
This review will give examples of the structure-function relationships used in the design of catalytic antibodies, including not only ligand or hapten-based approaches but also recent developments in the generation of catalytic antibodies through protein engineering. Last, a thermodynamic analysis is presented, which confirms that some antibodies do indeed catalyze their transformations by stabilizing transition states.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pollack, S.J., Jacobs, J.W. and Schultz, P.G. 1986. Selective chemical catalysis by an antibody. Science 234: 1570–1573.
Tramontano, A., Janda, K D. and Lerner, R.A. 1986. Catalytic antibodies. Science 234: 1566–1570.
Benkovic, S.J., Napper, A.D. and Lerner, R.A. 1988. Catalysis of a stereospecific bimolecular amide synthesis by an antibody. Proc. Natl. Acad. Sci. USA 85: 5355–5358.
Janda, K.D., Lerner, R.A. and Tramontano, A.J. 1988. Antibody catalysis of bimolecular amide formation. J. Am. Chem. Soc. 110: 4835–4837.
Hilvert, D., Hill, K.W., Nared, K.D. and Auditor, M.-T.M. 1989. Antibody catalysis of a Diels-Alder reaction. J. Am. Chem. Soc. 111: 9261–9262.
Jackson, D.Y., Jacobs, J.W., Reich, S., Sugasawara, R., Bartlett, P.A. and Schultz, P.G. 1988. An antibody-catalyzed Claisen rearrangement. J. Am. Chem. Soc. 110: 4841–4842.
Hilvert, D., Carpenter, S.H., Nared, D.K. and Auditor, M.-T.M. 1988. Catalysis of concerted reactions by antibodies: the Claisen rearrangement. Proc. Natl. Acad. Sci. USA 85: 4953–4955.
Cochran, A.G., Sugasawara, R. and Schultz, P.G. 1988. Photosensitized cleavage of a thymine dimer by an antibody. J. Am. Chem. Soc. 110: 7888–7890.
Shokat, K.M., Leumann, C.J., Sugasawara, R. and Schultz, P.G. 1988. An antibody-mediated redox reaction. Angew. Chem. Int. Engl. 27: 1172–1174.
Janjic, N. and Tramontano, A. 1989. Antibody-catalyzed redox reaction. J. Am. Chem. Soc. 111: 9109–9110.
Shokat, K.M., Leumann, C.J., Sugasawara, R. and Schultz, P.G. 1989. A new strategy for the generation of catalytic antibodies. Nature 338: 269–271.
Iverson, B.L., Cameron, K.E., Jahangiri, G.K. and Pasternak, D.S. 1990. Selective cleavage of trityl protecting groups catalyzed by an antibody. J. Am. Chem. Soc. 112: 5320–5323.
Cochran, A.G. and Schultz, P.G. Antibody-catalyzed porphyrin met-allation. 1990. Science 249: 781–783.
Iverson, B.L. and Lerner, R.A. 1989. Sequence-specific peptide cleavage catalyzed by an antibody. Science 243: 1184–1188.
Tramontano, A., Ammann, A.A. and Lerner, R.A. 1988. Antibody catalysis approaching the activity of enzymes. J. Am. Chem. Soc. 110: 2282–2286.
Janda, K.D., Weinhouse, M.I., Schloeder, D.M. and Lerner, R.A. 1990. Bait and switch strategy for obtaining catalytic antibodies with acyl-transfer capabilities. J. Am. Chem. Soc. 112: 1274–1275.
Napper, A.D., Benkovic, S.J., Tramontano, A. and Lerner, R.A. 1987. A stereospecific cyclization catalyzed by an antibody. Science 237: 1041–1043.
Janda, D.D., Benkovic, S.F. and Lerner, R.A. 1989. Catalytic anti-bodies with lipase activity and R or S substrate specificity. Science 244: 437–440.
Pollack, S.J., Hsiun, P. and Schultz, P.G. 1989. Stereospecific hydrolysis of alkyl esters by antibodies. J. Am. Chem. Soc. 111: 5961–5962.
Hilvert, D. and Nared, K.D. 1988. Stereospecific Claisen rearrangement catalyzed by an antibody. J. Am. Chem. Soc. 110: 5593–5594.
Schultz, P.G., Lerner, R.A. and Benkovic, S.J. 1990. Catalytic antibodies. Chem. Eng. News 68: 26–40.
Shokat, K.M. and Schultz, P.G. 1990. Catalytic antibodies. Annu. Rev. Immunol. 8: 335–363.
Schultz, P.G. 1989. Catalytic antibodies. Angew. Chem. Int. Engl. 28: 1283–1295.
Schultz, P.G. 1989. Catalytic antibodies. Acc. Chem. Res. 22: 287–294.
Amzel, L.M. and Poljak, R.J. 1979. Three-dimensional structure of immunoglobulins. Ann. Rev. Biochem. 48: 961–997.
Davis, M.M. and Bjorkman, P.J. 1988. T-cell antigen receptor genes and T-cell recognition. Nature 334: 395–402.
Pressman, D. and Grossberg, A. 1968. The Structural Basis of Antibody Specificity. Benjamin, New York.
Goodman, J.W. 1975. Antigenic determinants and antibody combining sites, Chapter 2. In: The Antigens, V. 3. M. Sela (Ed.). Academic Press, New York.
Nisonoff, A., Hopper, J. and Spring, S. 1975. The Antibody Molecule. Academic Press, New York.
Karu, A.E., Schmidt, D.J., Clarkson, C.E., Jacobs, J.W., Swanson, T.A., Egger, M.L., Carlson, R.E. and Van Emon, J.M. 1990. Detection of avermectins with monoclonal antibodies, Chapter 10. In: Food Safety and Pesticide Residues. Mumma, R. O. and Van Emon, J. M. (Eds.). American Chemical Society, Wash., D.C.
Milewich, L., Gomez-Sanchez, C., MacDonald, P.C. and Siiteri, P.K. 1975. Radioimmunoassay of androstenedione: the steroid molecule as a probe for antibody specificity. J. Steroid Biochem. 6: 1381–1387.
Karush, F. 1956. The interaction of purified antibody with optically isomeric haptens. J. Am. Chem. Soc. 78: 5519–5526.
Durfor, C.N., Bolin, R.J., Sugasawara, R., Massey, R.J., Jacobs, J.W. and Schultz, P.G. 1988. Antibody catalysis in reverse micelles. J. Am. Chem. Soc. 110: 8713–8714.
Jacobs, J., Schultz, P.G., Sugasawara, R. and Powell, M. 1987. Catalytic antibodies. J. Am. Chem. Soc. 109: 2174–2175.
Janda, K.D., Schloeder, D., Benkovic, S.J. and Lerner, R.A. 1988. Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science 241: 1188–1191.
Bartlett, P.A., Nakagawa, Y., Johnson, C.R., Reich, S.H. and Luis, A. 1988. Chorismate mutase inhibitors: synthesis and evaluation of some potential transition-state analogues. J. Org. Chem. 53: 3195–3210.
Jackson, D.Y. and Schultz, P.G. (Personal communication.)
Braisted, A. and Schultz, P.G. 1990. An antibody-catalyzed bimolecular Diels-Alder reaction. J. Am. Chem. Soc. 112: 7430–7431.
Nisonoff, A. and Pressman, D. 1957. Closeness of fit and forces involved in the reactions of antibody homologous to the p-(p′-azophe-nylazo)-benzoate ion group. J. Am. Chem. Soc. 79: 1616–1622.
Pressman, D. and Pauling, L. 1949. The reactions of antiserum homologous to the 4-azophthalate ion. J. Am. Chem. Soc. 71: 2893–2899.
Pressman, D., Grossberg, A.L., Pence, L.H. and Pauling, L. 1946. The reactions of antiserum homologous to the p-azophenyltrimethy-lammonium group. J. Am. Chem. Soc. 68: 250–255.
Grossberg, A.L. and Pressman, D. 1960. Nature of the combining site of antibody against a hapten bearing a positive charge. J. Am. Chem. Soc. 82: 5478–5482
Baldwin, E. and Schultz, P.G. 1989. Generation of a catalytic antibody by site-directed mutagenesis. Science 245: 1104–1107.
Iverson, B.L., Iverson, S.A., Roberts, V.A., Getzoff, E.D., Tainer, J.A., Benkovic, S.J. and Lerner, R.A. 1990. Metalloantibodies. Science 249: 659–662.
Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting-Mees, M., Burton, D.R., Benkovic, S.J. and Lerner, R.A. 1989. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246: 1275–1281.
Ward, S.E., Gussow, D., Griffiths, A.D., Jones, P.T. and Winter, G. 1989. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341: 544–546.
Orlandi, R., Gussow, D.H., Jones, P.T. and Winter, G. 1989. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86: 3833–3837.
Sastry, L., Alting-Mees, M., Huse, W.D., Short, J.M., Sorge, J.A., Hay, B.N., Janda, K.D., Benkovic, S.J. and Lerner, R.A. 1989. Cloning of the immunological repertoire in Escherichia coli for generation of monoclonal catalytic antibodies: construction of a heavy chain variable region-specific cDNA library. Proc. Natl. Acad. Sci. USA 86: 5728–5732.
Wolfenden, R. 1976. Transition state analog inhibitors and enzyme catalysis. Ann. Rev. Biophys. Bioeng. 5: 271–306.
Kurz, J.L. 1963. Transition state characterization for catalyzed reactions. J. Am. Chem. Soc. 85: 987–991.
Lienhard, G.E. 1973. Enzymatic catalysis and transition-state theory. Science 180: 149–154.
Wolfenden, R. 1972. Analog approaches to the structure of the transition state in enzymatic reactions. Acc. Chem. Res. 5: 10–18.
Kraut, J. 1988. How do enzymes work? Science 242: 533–540.
Bartlett, P.A. and Marlowe, C.K. 1983. Phosphonamidates as transition-state analogue inhibitors of thermolysin. Biochemistry 22: 4618–4624.
Pollack, S.J. and Schultz, P.G. 1987. Antibody catalysis by transition state stabilization. Cold Spr. Har. Sym. Quant. Biol. 52: 97–104.
Jacobs, J.W. 1989. Catalytic Antibodies. Thesis, Department of Chemistry, University of California, Berkeley.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jacobs, J. New Perspectives On Catalytic Antibodies. Nat Biotechnol 9, 258–262 (1991). https://doi.org/10.1038/nbt0391-258
Issue date:
DOI: https://doi.org/10.1038/nbt0391-258


