Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New Perspectives On Catalytic Antibodies

Abstract

This review will give examples of the structure-function relationships used in the design of catalytic antibodies, including not only ligand or hapten-based approaches but also recent developments in the generation of catalytic antibodies through protein engineering. Last, a thermodynamic analysis is presented, which confirms that some antibodies do indeed catalyze their transformations by stabilizing transition states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pollack, S.J., Jacobs, J.W. and Schultz, P.G. 1986. Selective chemical catalysis by an antibody. Science 234: 1570–1573.

    Article  CAS  Google Scholar 

  2. Tramontano, A., Janda, K D. and Lerner, R.A. 1986. Catalytic antibodies. Science 234: 1566–1570.

    Article  CAS  Google Scholar 

  3. Benkovic, S.J., Napper, A.D. and Lerner, R.A. 1988. Catalysis of a stereospecific bimolecular amide synthesis by an antibody. Proc. Natl. Acad. Sci. USA 85: 5355–5358.

    Article  CAS  Google Scholar 

  4. Janda, K.D., Lerner, R.A. and Tramontano, A.J. 1988. Antibody catalysis of bimolecular amide formation. J. Am. Chem. Soc. 110: 4835–4837.

    Article  CAS  Google Scholar 

  5. Hilvert, D., Hill, K.W., Nared, K.D. and Auditor, M.-T.M. 1989. Antibody catalysis of a Diels-Alder reaction. J. Am. Chem. Soc. 111: 9261–9262.

    Article  CAS  Google Scholar 

  6. Jackson, D.Y., Jacobs, J.W., Reich, S., Sugasawara, R., Bartlett, P.A. and Schultz, P.G. 1988. An antibody-catalyzed Claisen rearrangement. J. Am. Chem. Soc. 110: 4841–4842.

    Article  CAS  Google Scholar 

  7. Hilvert, D., Carpenter, S.H., Nared, D.K. and Auditor, M.-T.M. 1988. Catalysis of concerted reactions by antibodies: the Claisen rearrangement. Proc. Natl. Acad. Sci. USA 85: 4953–4955.

    Article  CAS  Google Scholar 

  8. Cochran, A.G., Sugasawara, R. and Schultz, P.G. 1988. Photosensitized cleavage of a thymine dimer by an antibody. J. Am. Chem. Soc. 110: 7888–7890.

    Article  CAS  Google Scholar 

  9. Shokat, K.M., Leumann, C.J., Sugasawara, R. and Schultz, P.G. 1988. An antibody-mediated redox reaction. Angew. Chem. Int. Engl. 27: 1172–1174.

    Article  Google Scholar 

  10. Janjic, N. and Tramontano, A. 1989. Antibody-catalyzed redox reaction. J. Am. Chem. Soc. 111: 9109–9110.

    Article  CAS  Google Scholar 

  11. Shokat, K.M., Leumann, C.J., Sugasawara, R. and Schultz, P.G. 1989. A new strategy for the generation of catalytic antibodies. Nature 338: 269–271.

    Article  CAS  Google Scholar 

  12. Iverson, B.L., Cameron, K.E., Jahangiri, G.K. and Pasternak, D.S. 1990. Selective cleavage of trityl protecting groups catalyzed by an antibody. J. Am. Chem. Soc. 112: 5320–5323.

    Article  CAS  Google Scholar 

  13. Cochran, A.G. and Schultz, P.G. Antibody-catalyzed porphyrin met-allation. 1990. Science 249: 781–783.

    Article  CAS  Google Scholar 

  14. Iverson, B.L. and Lerner, R.A. 1989. Sequence-specific peptide cleavage catalyzed by an antibody. Science 243: 1184–1188.

    Article  CAS  Google Scholar 

  15. Tramontano, A., Ammann, A.A. and Lerner, R.A. 1988. Antibody catalysis approaching the activity of enzymes. J. Am. Chem. Soc. 110: 2282–2286.

    Article  CAS  Google Scholar 

  16. Janda, K.D., Weinhouse, M.I., Schloeder, D.M. and Lerner, R.A. 1990. Bait and switch strategy for obtaining catalytic antibodies with acyl-transfer capabilities. J. Am. Chem. Soc. 112: 1274–1275.

    Article  CAS  Google Scholar 

  17. Napper, A.D., Benkovic, S.J., Tramontano, A. and Lerner, R.A. 1987. A stereospecific cyclization catalyzed by an antibody. Science 237: 1041–1043.

    Article  CAS  Google Scholar 

  18. Janda, D.D., Benkovic, S.F. and Lerner, R.A. 1989. Catalytic anti-bodies with lipase activity and R or S substrate specificity. Science 244: 437–440.

    Article  CAS  Google Scholar 

  19. Pollack, S.J., Hsiun, P. and Schultz, P.G. 1989. Stereospecific hydrolysis of alkyl esters by antibodies. J. Am. Chem. Soc. 111: 5961–5962.

    Article  CAS  Google Scholar 

  20. Hilvert, D. and Nared, K.D. 1988. Stereospecific Claisen rearrangement catalyzed by an antibody. J. Am. Chem. Soc. 110: 5593–5594.

    Article  CAS  Google Scholar 

  21. Schultz, P.G., Lerner, R.A. and Benkovic, S.J. 1990. Catalytic antibodies. Chem. Eng. News 68: 26–40.

    Article  CAS  Google Scholar 

  22. Shokat, K.M. and Schultz, P.G. 1990. Catalytic antibodies. Annu. Rev. Immunol. 8: 335–363.

    Article  CAS  Google Scholar 

  23. Schultz, P.G. 1989. Catalytic antibodies. Angew. Chem. Int. Engl. 28: 1283–1295.

    Article  Google Scholar 

  24. Schultz, P.G. 1989. Catalytic antibodies. Acc. Chem. Res. 22: 287–294.

    Article  CAS  Google Scholar 

  25. Amzel, L.M. and Poljak, R.J. 1979. Three-dimensional structure of immunoglobulins. Ann. Rev. Biochem. 48: 961–997.

    Article  CAS  Google Scholar 

  26. Davis, M.M. and Bjorkman, P.J. 1988. T-cell antigen receptor genes and T-cell recognition. Nature 334: 395–402.

    Article  CAS  Google Scholar 

  27. Pressman, D. and Grossberg, A. 1968. The Structural Basis of Antibody Specificity. Benjamin, New York.

    Google Scholar 

  28. Goodman, J.W. 1975. Antigenic determinants and antibody combining sites, Chapter 2. In: The Antigens, V. 3. M. Sela (Ed.). Academic Press, New York.

    Google Scholar 

  29. Nisonoff, A., Hopper, J. and Spring, S. 1975. The Antibody Molecule. Academic Press, New York.

    Google Scholar 

  30. Karu, A.E., Schmidt, D.J., Clarkson, C.E., Jacobs, J.W., Swanson, T.A., Egger, M.L., Carlson, R.E. and Van Emon, J.M. 1990. Detection of avermectins with monoclonal antibodies, Chapter 10. In: Food Safety and Pesticide Residues. Mumma, R. O. and Van Emon, J. M. (Eds.). American Chemical Society, Wash., D.C.

    Google Scholar 

  31. Milewich, L., Gomez-Sanchez, C., MacDonald, P.C. and Siiteri, P.K. 1975. Radioimmunoassay of androstenedione: the steroid molecule as a probe for antibody specificity. J. Steroid Biochem. 6: 1381–1387.

    Article  CAS  Google Scholar 

  32. Karush, F. 1956. The interaction of purified antibody with optically isomeric haptens. J. Am. Chem. Soc. 78: 5519–5526.

    Article  CAS  Google Scholar 

  33. Durfor, C.N., Bolin, R.J., Sugasawara, R., Massey, R.J., Jacobs, J.W. and Schultz, P.G. 1988. Antibody catalysis in reverse micelles. J. Am. Chem. Soc. 110: 8713–8714.

    Article  CAS  Google Scholar 

  34. Jacobs, J., Schultz, P.G., Sugasawara, R. and Powell, M. 1987. Catalytic antibodies. J. Am. Chem. Soc. 109: 2174–2175.

    Article  CAS  Google Scholar 

  35. Janda, K.D., Schloeder, D., Benkovic, S.J. and Lerner, R.A. 1988. Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science 241: 1188–1191.

    Article  CAS  Google Scholar 

  36. Bartlett, P.A., Nakagawa, Y., Johnson, C.R., Reich, S.H. and Luis, A. 1988. Chorismate mutase inhibitors: synthesis and evaluation of some potential transition-state analogues. J. Org. Chem. 53: 3195–3210.

    Article  CAS  Google Scholar 

  37. Jackson, D.Y. and Schultz, P.G. (Personal communication.)

  38. Braisted, A. and Schultz, P.G. 1990. An antibody-catalyzed bimolecular Diels-Alder reaction. J. Am. Chem. Soc. 112: 7430–7431.

    Article  CAS  Google Scholar 

  39. Nisonoff, A. and Pressman, D. 1957. Closeness of fit and forces involved in the reactions of antibody homologous to the p-(p′-azophe-nylazo)-benzoate ion group. J. Am. Chem. Soc. 79: 1616–1622.

    Article  CAS  Google Scholar 

  40. Pressman, D. and Pauling, L. 1949. The reactions of antiserum homologous to the 4-azophthalate ion. J. Am. Chem. Soc. 71: 2893–2899.

    Article  CAS  Google Scholar 

  41. Pressman, D., Grossberg, A.L., Pence, L.H. and Pauling, L. 1946. The reactions of antiserum homologous to the p-azophenyltrimethy-lammonium group. J. Am. Chem. Soc. 68: 250–255.

    Article  CAS  Google Scholar 

  42. Grossberg, A.L. and Pressman, D. 1960. Nature of the combining site of antibody against a hapten bearing a positive charge. J. Am. Chem. Soc. 82: 5478–5482

    Article  CAS  Google Scholar 

  43. Baldwin, E. and Schultz, P.G. 1989. Generation of a catalytic antibody by site-directed mutagenesis. Science 245: 1104–1107.

    Article  CAS  Google Scholar 

  44. Iverson, B.L., Iverson, S.A., Roberts, V.A., Getzoff, E.D., Tainer, J.A., Benkovic, S.J. and Lerner, R.A. 1990. Metalloantibodies. Science 249: 659–662.

    Article  CAS  Google Scholar 

  45. Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting-Mees, M., Burton, D.R., Benkovic, S.J. and Lerner, R.A. 1989. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246: 1275–1281.

    Article  CAS  Google Scholar 

  46. Ward, S.E., Gussow, D., Griffiths, A.D., Jones, P.T. and Winter, G. 1989. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341: 544–546.

    Article  CAS  Google Scholar 

  47. Orlandi, R., Gussow, D.H., Jones, P.T. and Winter, G. 1989. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86: 3833–3837.

    Article  CAS  Google Scholar 

  48. Sastry, L., Alting-Mees, M., Huse, W.D., Short, J.M., Sorge, J.A., Hay, B.N., Janda, K.D., Benkovic, S.J. and Lerner, R.A. 1989. Cloning of the immunological repertoire in Escherichia coli for generation of monoclonal catalytic antibodies: construction of a heavy chain variable region-specific cDNA library. Proc. Natl. Acad. Sci. USA 86: 5728–5732.

    Article  CAS  Google Scholar 

  49. Wolfenden, R. 1976. Transition state analog inhibitors and enzyme catalysis. Ann. Rev. Biophys. Bioeng. 5: 271–306.

    Article  CAS  Google Scholar 

  50. Kurz, J.L. 1963. Transition state characterization for catalyzed reactions. J. Am. Chem. Soc. 85: 987–991.

    Article  CAS  Google Scholar 

  51. Lienhard, G.E. 1973. Enzymatic catalysis and transition-state theory. Science 180: 149–154.

    Article  CAS  Google Scholar 

  52. Wolfenden, R. 1972. Analog approaches to the structure of the transition state in enzymatic reactions. Acc. Chem. Res. 5: 10–18.

    Article  CAS  Google Scholar 

  53. Kraut, J. 1988. How do enzymes work? Science 242: 533–540.

    Article  CAS  Google Scholar 

  54. Bartlett, P.A. and Marlowe, C.K. 1983. Phosphonamidates as transition-state analogue inhibitors of thermolysin. Biochemistry 22: 4618–4624.

    Article  CAS  Google Scholar 

  55. Pollack, S.J. and Schultz, P.G. 1987. Antibody catalysis by transition state stabilization. Cold Spr. Har. Sym. Quant. Biol. 52: 97–104.

    Article  CAS  Google Scholar 

  56. Jacobs, J.W. 1989. Catalytic Antibodies. Thesis, Department of Chemistry, University of California, Berkeley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, J. New Perspectives On Catalytic Antibodies. Nat Biotechnol 9, 258–262 (1991). https://doi.org/10.1038/nbt0391-258

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0391-258

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing