Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transformation Systems for Generating Marker–Free Transgenic Plants

Abstract

The ability to efficiently introduce foreign genes into plants is key to the success of the emerging plant biotechnology industry. Genetic transformation of crop plants is becoming increasingly routine both in terms of the number of plant species which can be transformed and the frequency of transformation, resulting in a number of transgenk products which are ready or close to market introduction1. The imminent commercialization of transgenk plants has generated debate about the desirability of the transgenk products containing selectable marker genes, or in fact any other ancillary DNA sequences not directly contributing to the final product2–6. In this review, we discuss these issues and examine transformation systems recently developed to selectively eliminate particular transgene sequences from the final transgenic plant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fraley, R.T. 1992. Sustaining the food supply. Bio/Technology 10: 40–43.

    Google Scholar 

  2. Bryant, J. and Leather, S. 1992. Removal of selectable marker genes from transgenic plants: Needless sophistication or social necessity? TIBTECH 10: 274–275.

    Article  Google Scholar 

  3. Flavell, R.B., Dart, E., Fuchs, R.L. and Fraley, R.T. 1992. Selectable marker genes: Safe for Plants? Bio/Technology 10: 141–144.

    CAS  Google Scholar 

  4. Goldsbrough, A. 1992. Marker gene removal: A practical necessity? TIBECH 10: 417.

    CAS  Google Scholar 

  5. Gressel, J. 1992. Indiscriminate use of selectable markers—sowing wild oats? TIBTECH 10: 382.

    Article  Google Scholar 

  6. Dale, P.J., 1992. Spread of engineered genes to wild relatives. Plant Physicol. 100: 13–15.

    Article  CAS  Google Scholar 

  7. Sawahel, W.A. and Cove, D.J. 1992. Gene transfer strategies in plants. Biotech Advances 10: 393–412.

    Article  CAS  Google Scholar 

  8. Potrykus, I., 1991. Gene transfer to plants; assessment of published approaches and results. Ann. Rev. Plant. Physiol. Mol. Biol 42: 205–225.

    CAS  Google Scholar 

  9. Bevan, M.W., Flavell, R.B. and Chilton, M.D. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187.

    Article  CAS  Google Scholar 

  10. Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Gallupi, G.R. and Goldberg, S.B. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80: 4803–4807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herrera-Estrella, L., De Block, M., Messens, E., Hernalsteens, J.P., Van Montagu, M and Schell, J. 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2: 987–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perez, P., Tiraby, G., Kallerhoff, J. and Perret, J. 1989. Phleomycin resistance as a dominant selectable marker for plant cell transformation. Plant Mol. Biol. 13: 365–373.

    Article  CAS  PubMed  Google Scholar 

  13. Hille, J., Verheggen, F., Roelvink, P., Franssen, H., van Kammen, A. and Zabel, P. 1986. Bleomycin resistance: A new dominant marker for plant cell transformation. Plant Mol. Biol. 7: 171–176.

    Article  CAS  PubMed  Google Scholar 

  14. Herrera-Estrella, L., Depicker, A., Van Montague, M. and Schell, J. 1983. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303: 209–213.

    Article  CAS  Google Scholar 

  15. van den Elzen, P.J.M., Townsend, J., Lee, K.Y. and Bedbrook, J.R. 1985b. A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5: 299–302.

    Article  CAS  PubMed  Google Scholar 

  16. Waldron, C., Murphy, E.B., Roberts, J.L., Gustafson, G.D., Armour, S.L. and Malcolm, S.K. 1985. Resistance to hygromycin B. Plant Mol. Biol. 5: 103–108.

    Article  CAS  PubMed  Google Scholar 

  17. Jones, J.D.G., Svab, Z., Harper, E.C., Hurwitz, C.D. and Maliga, P. 1987. A dominant nuclear streptomycin resistant marker for plant cell transformation. Mol. Gen. Genet. 210: 86–91.

    Article  CAS  Google Scholar 

  18. Hayford, M.B., Medford, J.I., Hoffman, N.L., Rogers, S.G. and Klee, H.J. 1988. Development of a plant transformation selection system based on expression of genes encoding gentamycin acetyltransferases. Plant Physiol. 86: 1216–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., Rao Movva, N., Thompson, C., Von Montagu, M. and Leemans, J. 1987. Engineering herbicide resistance in plants with a detoxifying enzyme. EMBO J. 6: 2513–2518.

    Article  CAS  Google Scholar 

  20. Thompson, C.J., Movva, N.R., Tizzard, R., Crameri, R., Davies, J.E., Lauwereys, M. and Botterman, J. 1987. Characterization of the herbicide resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6: 2519–2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah, D.M., Horsch, R.B., Klee, H.J., Kishore, G.M., Winter, J.A., Turner, N.E., Hironaka, C.M., Sanders, P.R., Gasser, C.S., Aykent, S., Siegel, N.R. and Rogers, S.G. 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–481.

    Article  CAS  PubMed  Google Scholar 

  22. Stalker, D.M., McBride, K.E. and Malyj, L.D. 1988. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419–423.

    Article  CAS  PubMed  Google Scholar 

  23. Cheung, A.L., Bogorad, L., Montagu, M.v. and Schell, J. 1988. Relocating a gene for herbicide tolerance: A chloroplast gene is converted into a nuclear gene. Proc. Natl. Acad. Sci. USA 85: 391–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lyon, B.R., Llewellyn, D.J., Huppatz, J.L., Dennis, E.S. and Peacock, W.J. 1989. Expression of a bacterial gene in transgenic tobacco plants confers resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol. Biol. 13: 533–540.

    Article  CAS  PubMed  Google Scholar 

  25. Perl, A., Galili, S., Shaul, O., Ben-Tzvi, I. and Galili, G. 1993. Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: Two novel selectable markers for plant transformation. Bio/Technology 11: 715–718.

    CAS  Google Scholar 

  26. Guerineau, F., Brooks, L., Meadows, J., Lucy, A., Robinson, C. and Mulli-neaux, P. 1990. Sulfonamide resistance gene for plant transformation. Plant Mol. Biol. 15: 127–136.

    Article  CAS  PubMed  Google Scholar 

  27. Haughn, G.W., Smith, J., Mazur, B. and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211: 266–271.

    Article  CAS  Google Scholar 

  28. Goddijn, O.J.M., van der Duyn Schouten, P.M., Schilperoort, R.A. and Hoge, J.H.C. 1993. A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol. Biol. 22: 907–912.

    Article  CAS  PubMed  Google Scholar 

  29. Fuchs, R.L., Heeren, R.A., Gustafson, M.E., Rogan, G.J., Bartnicki, D.E., Leimgruber, R.M., Finn, R.F., Hershman, A. and Berberich, S.A. 1993. Purification and characterization of microbially expressed neomycin phospho-transferase II (NTPII) protein and its equivalence to the plant expressed protein. Bio/Technology 11: 1537–1542.

    CAS  Google Scholar 

  30. Fuchs, R.L., Ream, J.E., Hammond, B.G., Naylor, M.W., Leimgruber, R.M. and Berberich, S.A. 1993. Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Bio/Technology 11: 1543–1547.

    CAS  Google Scholar 

  31. Nap, J.P., Bijvoet, J. and Stikema, W.J. 1992. Biosafety of kanamycin resistant plants: An overview. Transgenic Research 1: 239–249.

    Article  CAS  PubMed  Google Scholar 

  32. Redenbaugh, K., Hiatt, W., Martineau, B., Kramer, M., Sheehy, R., Sanders, R., Houck, R. and Emlay, D. 1992. Safety assessment of genetically engineered fruits and vegetables: A case of the Flavr Savr tomato. CRC Press, Boca Raton FL.

  33. Dale, E.C. and Ow, D.W. 1991. Gene transfer and subsequent removal of the selection gene from the host genome. Proc. Nat. Acad. Sci. USA 88: 10558–10562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldsbrough, A.P., Lastrella, C.N. and Yoder, J.I. 1993. Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Bio/Technology 11: 1286–1292.

    CAS  Google Scholar 

  35. Matzke, M.A., Primig, M., Trnovsky, J. and Matzke, A.J.M. 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8: 643–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jorgensen, R. 1991. Silencing of plant genes by homologous transgenes. AgBiotech News and Infor. 4: 265–273.

    Google Scholar 

  37. Tanksley, S. 1991. Regulatory considerations: Genetically engineered plants: a summary of a workshop held at the Boyce Thompson Institute for Plant Research. San Francisco: Center for Science Information.

  38. Depicker, A., Herman, L., Jacobs, A., Schell, J. and van Montagu, M. 1985. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobaclerium plant cell interaction. Mol. Gen. Genet. 201: 477–484.

    Article  CAS  Google Scholar 

  39. De Block, M. and Debrouwer, D. 1987. Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium infection are mainly integrated at the same locus. Theor. Appl. Genet. 82: 257–263.

    Article  Google Scholar 

  40. McKnight, T.D., Lillis, M.T. and Simpson, R.B. 1987. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8: 439–445.

    Article  CAS  PubMed  Google Scholar 

  41. Cregg, J.M. and Madden, K.R. 1989. Use of site-specific recombination to regenerate selectable markers. Mol. Gen. Genet. 219: 320–323.

    Article  CAS  PubMed  Google Scholar 

  42. Golic, K.G. and Lindquist, S. 1989. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophilagenome. Cell 59: 499–509.

    Article  CAS  PubMed  Google Scholar 

  43. O'Gorman, S., Fox, D.T. and Wahl, G.M. 1991. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351–1355.

    Article  CAS  PubMed  Google Scholar 

  44. Lyznik, L., Mitchell, J.C., Hirayama, L. and Hodges, T.K. 1993. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucl. Acids Res. 214: 969–975.

    Article  Google Scholar 

  45. Dale, E.C. and Ow, D.W. 1990. Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79–85.

    Article  CAS  PubMed  Google Scholar 

  46. Odell, J., Caimi, P., Sauer, B. and Russell, S. 1990. Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet. 223: 369–378.

    Article  CAS  PubMed  Google Scholar 

  47. Onouchi, H., Yokoi, K., Machida, C., Matsuzaki, H., Oshima, Y., Matsuoka, K., Nakamura, K. and Machida, Y. 1991. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nuc. Acids. Res. 19: 6373–6378.

    Article  CAS  Google Scholar 

  48. Maeser, S. and Kahmann, R., 1991. The Gin recombinase of phage Mu can catalyze site-specific recombination in plant protoplasts. Mol. Gen. Genet. 230: 170–176.

    Article  CAS  PubMed  Google Scholar 

  49. Russell, S.H., Hoopes, J.L. and Odell, J.T. 1992. Directed excision of a transgene from the plant genome. Mol.Gen. Genet. 234: 49–59.

    CAS  PubMed  Google Scholar 

  50. Baker, B., Schell, J., Lörz, H. and Fedoroff, N. Transposition of the maize controlling element “Activator” in tobacco. Proc. Natl. Acad. Sci. USA 83: 4844–4848

    Article  CAS  Google Scholar 

  51. Yoder, J.I., Plays, J., Alpert, K. and Lassner, M. 1988. Actransposition in transgenic tomato plants. Mol. Gen. Genet. 213: 291–296.

    Article  CAS  Google Scholar 

  52. Fedoroff, N.V. 1989. Maize transposable elements, p. 375–412. In: Mobile DNA. Berg, D. E. and Howe, M. M. (Eds.). Amercian Society for Microbiology, Washington D.C.

    Google Scholar 

  53. Greenblatt, I.M. 1984. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108: 471–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones, J.D.G., Carland, F., Lim, E., Ralston, E. and Dooner, H.K. 1990. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Belzile, F., Lassner, M.W., Tong, Y., Khush, R. and Yoder, J.I. 1989. Sexual transmission of transposed Activator elements in transgenic tomatoes. Genetics 123: 181–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lassner, M.W., Palys, J.M. and Yoder, J. I. 1989a. Genetic transactivation of Dissociation elements in transgenic tomato plants. Mol. Gen. Genet. 218: 25–32.

    Article  CAS  Google Scholar 

  57. Masterson, R.V., Furtek, D.B., Grevelding, C. and Schell, J. 1989. A Amaize Dstransposable element containing a dihydrofolate reductase gene transposes in Nicotiana tabacum and Arabidopsis thaliana. Mol. Gen. Genet. 219: 461–466.

    Article  CAS  Google Scholar 

  58. Ozcan, S., Firek, S. and Draper, J. 1993. Selectable marker genes engineered for specific expression in target cells for plant transformation. Bio/Technology 11: 218–221.

    CAS  Google Scholar 

  59. Timberlake, W.E. and Marshall, M.A. 1989. Genetic engineering of filamentous fungi. Science 244: 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  60. Joyner, A.L. 1991. Gene targeting and gene trap screens using embryonic stem cells: New approaches to mammalian development. Bioessays 13: 649–656.

    Article  CAS  PubMed  Google Scholar 

  61. Halfter, U., Morris, P.C. and Willmitzer, L. 1992. Gene targeting in Arabidopsis thaliana. Mol. Gen. Genet. 231: 186–193.

    CAS  PubMed  Google Scholar 

  62. Lee, K.Y., Lund, P., Lowe, K. and Dunsmuir, P. 1990. Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell 2: 415–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paszkowski, J., Baur, M., Bogucki, A. and Potrykus, I. 1988. Gene targeting in plants. EMBO J. 13: 4021–4026.

    Article  Google Scholar 

  64. Yoder, J.I. and Kmiec, E. 1991. Progress towards gene targeting in plants, p. 265–278. In: Genetic Engineering Setlow, J. K. (Ed.). Plenum Press, New York.

    Chapter  Google Scholar 

  65. Heath-Pagliuso, C., Cole, A.D. and Kmiec, E.B. 1990. Purification and characterization of a type I topoisomerase from cultured tobacco cells. Plant Physiol. 94: 599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kieber, J.J., Tissier, A.F. and Signer, E.R. 1992. Cloning and characterization of an Arabidopsis thaliana topoisomerase gene. Plant Physiol. 99: 1493–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoder, J., Goldsbrough, A. Transformation Systems for Generating Marker–Free Transgenic Plants. Nat Biotechnol 12, 263–267 (1994). https://doi.org/10.1038/nbt0394-263

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0394-263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing