Abstract
The ability to efficiently introduce foreign genes into plants is key to the success of the emerging plant biotechnology industry. Genetic transformation of crop plants is becoming increasingly routine both in terms of the number of plant species which can be transformed and the frequency of transformation, resulting in a number of transgenk products which are ready or close to market introduction1. The imminent commercialization of transgenk plants has generated debate about the desirability of the transgenk products containing selectable marker genes, or in fact any other ancillary DNA sequences not directly contributing to the final product2–6. In this review, we discuss these issues and examine transformation systems recently developed to selectively eliminate particular transgene sequences from the final transgenic plant.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Fraley, R.T. 1992. Sustaining the food supply. Bio/Technology 10: 40–43.
Bryant, J. and Leather, S. 1992. Removal of selectable marker genes from transgenic plants: Needless sophistication or social necessity? TIBTECH 10: 274–275.
Flavell, R.B., Dart, E., Fuchs, R.L. and Fraley, R.T. 1992. Selectable marker genes: Safe for Plants? Bio/Technology 10: 141–144.
Goldsbrough, A. 1992. Marker gene removal: A practical necessity? TIBECH 10: 417.
Gressel, J. 1992. Indiscriminate use of selectable markers—sowing wild oats? TIBTECH 10: 382.
Dale, P.J., 1992. Spread of engineered genes to wild relatives. Plant Physicol. 100: 13–15.
Sawahel, W.A. and Cove, D.J. 1992. Gene transfer strategies in plants. Biotech Advances 10: 393–412.
Potrykus, I., 1991. Gene transfer to plants; assessment of published approaches and results. Ann. Rev. Plant. Physiol. Mol. Biol 42: 205–225.
Bevan, M.W., Flavell, R.B. and Chilton, M.D. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187.
Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Gallupi, G.R. and Goldberg, S.B. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80: 4803–4807.
Herrera-Estrella, L., De Block, M., Messens, E., Hernalsteens, J.P., Van Montagu, M and Schell, J. 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2: 987–995.
Perez, P., Tiraby, G., Kallerhoff, J. and Perret, J. 1989. Phleomycin resistance as a dominant selectable marker for plant cell transformation. Plant Mol. Biol. 13: 365–373.
Hille, J., Verheggen, F., Roelvink, P., Franssen, H., van Kammen, A. and Zabel, P. 1986. Bleomycin resistance: A new dominant marker for plant cell transformation. Plant Mol. Biol. 7: 171–176.
Herrera-Estrella, L., Depicker, A., Van Montague, M. and Schell, J. 1983. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303: 209–213.
van den Elzen, P.J.M., Townsend, J., Lee, K.Y. and Bedbrook, J.R. 1985b. A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5: 299–302.
Waldron, C., Murphy, E.B., Roberts, J.L., Gustafson, G.D., Armour, S.L. and Malcolm, S.K. 1985. Resistance to hygromycin B. Plant Mol. Biol. 5: 103–108.
Jones, J.D.G., Svab, Z., Harper, E.C., Hurwitz, C.D. and Maliga, P. 1987. A dominant nuclear streptomycin resistant marker for plant cell transformation. Mol. Gen. Genet. 210: 86–91.
Hayford, M.B., Medford, J.I., Hoffman, N.L., Rogers, S.G. and Klee, H.J. 1988. Development of a plant transformation selection system based on expression of genes encoding gentamycin acetyltransferases. Plant Physiol. 86: 1216–1222.
De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., Rao Movva, N., Thompson, C., Von Montagu, M. and Leemans, J. 1987. Engineering herbicide resistance in plants with a detoxifying enzyme. EMBO J. 6: 2513–2518.
Thompson, C.J., Movva, N.R., Tizzard, R., Crameri, R., Davies, J.E., Lauwereys, M. and Botterman, J. 1987. Characterization of the herbicide resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6: 2519–2523.
Shah, D.M., Horsch, R.B., Klee, H.J., Kishore, G.M., Winter, J.A., Turner, N.E., Hironaka, C.M., Sanders, P.R., Gasser, C.S., Aykent, S., Siegel, N.R. and Rogers, S.G. 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–481.
Stalker, D.M., McBride, K.E. and Malyj, L.D. 1988. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419–423.
Cheung, A.L., Bogorad, L., Montagu, M.v. and Schell, J. 1988. Relocating a gene for herbicide tolerance: A chloroplast gene is converted into a nuclear gene. Proc. Natl. Acad. Sci. USA 85: 391–395.
Lyon, B.R., Llewellyn, D.J., Huppatz, J.L., Dennis, E.S. and Peacock, W.J. 1989. Expression of a bacterial gene in transgenic tobacco plants confers resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol. Biol. 13: 533–540.
Perl, A., Galili, S., Shaul, O., Ben-Tzvi, I. and Galili, G. 1993. Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: Two novel selectable markers for plant transformation. Bio/Technology 11: 715–718.
Guerineau, F., Brooks, L., Meadows, J., Lucy, A., Robinson, C. and Mulli-neaux, P. 1990. Sulfonamide resistance gene for plant transformation. Plant Mol. Biol. 15: 127–136.
Haughn, G.W., Smith, J., Mazur, B. and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211: 266–271.
Goddijn, O.J.M., van der Duyn Schouten, P.M., Schilperoort, R.A. and Hoge, J.H.C. 1993. A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol. Biol. 22: 907–912.
Fuchs, R.L., Heeren, R.A., Gustafson, M.E., Rogan, G.J., Bartnicki, D.E., Leimgruber, R.M., Finn, R.F., Hershman, A. and Berberich, S.A. 1993. Purification and characterization of microbially expressed neomycin phospho-transferase II (NTPII) protein and its equivalence to the plant expressed protein. Bio/Technology 11: 1537–1542.
Fuchs, R.L., Ream, J.E., Hammond, B.G., Naylor, M.W., Leimgruber, R.M. and Berberich, S.A. 1993. Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Bio/Technology 11: 1543–1547.
Nap, J.P., Bijvoet, J. and Stikema, W.J. 1992. Biosafety of kanamycin resistant plants: An overview. Transgenic Research 1: 239–249.
Redenbaugh, K., Hiatt, W., Martineau, B., Kramer, M., Sheehy, R., Sanders, R., Houck, R. and Emlay, D. 1992. Safety assessment of genetically engineered fruits and vegetables: A case of the Flavr Savr tomato. CRC Press, Boca Raton FL.
Dale, E.C. and Ow, D.W. 1991. Gene transfer and subsequent removal of the selection gene from the host genome. Proc. Nat. Acad. Sci. USA 88: 10558–10562.
Goldsbrough, A.P., Lastrella, C.N. and Yoder, J.I. 1993. Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Bio/Technology 11: 1286–1292.
Matzke, M.A., Primig, M., Trnovsky, J. and Matzke, A.J.M. 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8: 643–649.
Jorgensen, R. 1991. Silencing of plant genes by homologous transgenes. AgBiotech News and Infor. 4: 265–273.
Tanksley, S. 1991. Regulatory considerations: Genetically engineered plants: a summary of a workshop held at the Boyce Thompson Institute for Plant Research. San Francisco: Center for Science Information.
Depicker, A., Herman, L., Jacobs, A., Schell, J. and van Montagu, M. 1985. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobaclerium plant cell interaction. Mol. Gen. Genet. 201: 477–484.
De Block, M. and Debrouwer, D. 1987. Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium infection are mainly integrated at the same locus. Theor. Appl. Genet. 82: 257–263.
McKnight, T.D., Lillis, M.T. and Simpson, R.B. 1987. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8: 439–445.
Cregg, J.M. and Madden, K.R. 1989. Use of site-specific recombination to regenerate selectable markers. Mol. Gen. Genet. 219: 320–323.
Golic, K.G. and Lindquist, S. 1989. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophilagenome. Cell 59: 499–509.
O'Gorman, S., Fox, D.T. and Wahl, G.M. 1991. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351–1355.
Lyznik, L., Mitchell, J.C., Hirayama, L. and Hodges, T.K. 1993. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucl. Acids Res. 214: 969–975.
Dale, E.C. and Ow, D.W. 1990. Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79–85.
Odell, J., Caimi, P., Sauer, B. and Russell, S. 1990. Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet. 223: 369–378.
Onouchi, H., Yokoi, K., Machida, C., Matsuzaki, H., Oshima, Y., Matsuoka, K., Nakamura, K. and Machida, Y. 1991. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nuc. Acids. Res. 19: 6373–6378.
Maeser, S. and Kahmann, R., 1991. The Gin recombinase of phage Mu can catalyze site-specific recombination in plant protoplasts. Mol. Gen. Genet. 230: 170–176.
Russell, S.H., Hoopes, J.L. and Odell, J.T. 1992. Directed excision of a transgene from the plant genome. Mol.Gen. Genet. 234: 49–59.
Baker, B., Schell, J., Lörz, H. and Fedoroff, N. Transposition of the maize controlling element “Activator” in tobacco. Proc. Natl. Acad. Sci. USA 83: 4844–4848
Yoder, J.I., Plays, J., Alpert, K. and Lassner, M. 1988. Actransposition in transgenic tomato plants. Mol. Gen. Genet. 213: 291–296.
Fedoroff, N.V. 1989. Maize transposable elements, p. 375–412. In: Mobile DNA. Berg, D. E. and Howe, M. M. (Eds.). Amercian Society for Microbiology, Washington D.C.
Greenblatt, I.M. 1984. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108: 471–485.
Jones, J.D.G., Carland, F., Lim, E., Ralston, E. and Dooner, H.K. 1990. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707
Belzile, F., Lassner, M.W., Tong, Y., Khush, R. and Yoder, J.I. 1989. Sexual transmission of transposed Activator elements in transgenic tomatoes. Genetics 123: 181–189.
Lassner, M.W., Palys, J.M. and Yoder, J. I. 1989a. Genetic transactivation of Dissociation elements in transgenic tomato plants. Mol. Gen. Genet. 218: 25–32.
Masterson, R.V., Furtek, D.B., Grevelding, C. and Schell, J. 1989. A Amaize Dstransposable element containing a dihydrofolate reductase gene transposes in Nicotiana tabacum and Arabidopsis thaliana. Mol. Gen. Genet. 219: 461–466.
Ozcan, S., Firek, S. and Draper, J. 1993. Selectable marker genes engineered for specific expression in target cells for plant transformation. Bio/Technology 11: 218–221.
Timberlake, W.E. and Marshall, M.A. 1989. Genetic engineering of filamentous fungi. Science 244: 1313–1317.
Joyner, A.L. 1991. Gene targeting and gene trap screens using embryonic stem cells: New approaches to mammalian development. Bioessays 13: 649–656.
Halfter, U., Morris, P.C. and Willmitzer, L. 1992. Gene targeting in Arabidopsis thaliana. Mol. Gen. Genet. 231: 186–193.
Lee, K.Y., Lund, P., Lowe, K. and Dunsmuir, P. 1990. Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell 2: 415–425.
Paszkowski, J., Baur, M., Bogucki, A. and Potrykus, I. 1988. Gene targeting in plants. EMBO J. 13: 4021–4026.
Yoder, J.I. and Kmiec, E. 1991. Progress towards gene targeting in plants, p. 265–278. In: Genetic Engineering Setlow, J. K. (Ed.). Plenum Press, New York.
Heath-Pagliuso, C., Cole, A.D. and Kmiec, E.B. 1990. Purification and characterization of a type I topoisomerase from cultured tobacco cells. Plant Physiol. 94: 599–606.
Kieber, J.J., Tissier, A.F. and Signer, E.R. 1992. Cloning and characterization of an Arabidopsis thaliana topoisomerase gene. Plant Physiol. 99: 1493–1501.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Yoder, J., Goldsbrough, A. Transformation Systems for Generating Marker–Free Transgenic Plants. Nat Biotechnol 12, 263–267 (1994). https://doi.org/10.1038/nbt0394-263
Issue date:
DOI: https://doi.org/10.1038/nbt0394-263
This article is cited by
-
A novel non-antibiotic selectable marker GASA6 for plant transformation
Plant Cell, Tissue and Organ Culture (PCTOC) (2022)
-
Development of marker-free insect resistant transgenic okra (Abelmoschus esculentus L. Moench) expressing the cry1Ac gene and identification of vector backbone-free events
Physiology and Molecular Biology of Plants (2021)
-
Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane
Plant Molecular Biology (2019)
-
Seamless editing of the chloroplast genome in plants
BMC Plant Biology (2016)
-
Pflanzenbiotechnologie 3.0
Gesunde Pflanzen (2015)


