Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Roaming-mediated ultrafast isomerization of geminal tri-bromides in the gas and liquid phases

Abstract

‘Roaming’ is a new and unusual class of reaction mechanism that has recently been discovered in unimolecular dissociation reactions of isolated molecules in the gas phase. It is characterized by frustrated bond cleavage, after which the two incipient fragments ‘roam’ on a flat region of the potential energy surface before reacting with one another. Here, we provide evidence that supports roaming in the liquid phase. We are now able to explain previous solution-phase experiments by comparing them with new ultrafast transient absorption data showing the photoisomerization of gas-phase CHBr3. We see that, upon S0–S1 excitation, gas-phase CHBr3 isomerizes within 100 fs into the BrHCBr–Br species, which is identical to what has been observed in solution. Similar sub-100 fs isomerization is now also observed for BBr3 and PBr3 in solution upon S1 excitation. Quantum chemical simulations of XBr3 (X = B, P or CH) suggest that photochemical reactivity in all three cases studied is governed by S1/S0 conical intersections and can best be described as occurring through roaming-mediated pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental data illustrating direct photochemical isomerization of gas-phase CHBr3.
Figure 2: Minimum energy paths (MEPs) from S1 of the parent molecules to S0 of the isomers.
Figure 3: Roaming-mediated isomerization of CHBr3 following S1 excitation.
Figure 4: Evidence for ultrafast direct isomerization of S1-excited PBr3 and BBr3 in solution.
Figure 5: Schematic representation of ultraviolet photochemistry of boron and phosphorus tribromides in solution.
Figure 6: Roaming-mediated isomerization of BBr3 and PBr3 following S1 excitation.

Similar content being viewed by others

References

  1. Townsend, D. et al. The roaming atom: straying from the reaction path in formaldehyde. Science 306, 1158–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Suits, A. G. Roaming atoms and radicals: a new mechanism in molecular dissociation. Acc. Chem. Res. 41, 873–881 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Herath, N. & Suits, A. G. Roaming radical reactions. J. Phys. Chem. Lett. 2, 642–647 (2011).

    Article  CAS  Google Scholar 

  4. Bowman, J. M. & Sheler, B. C. Roaming radicals. Annu. Rev. Phys. Chem. 62, 531–553 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Houston, P. L. & Kable, S. H. Photodissociation of acetaldehyde as a second example of the roaming mechanism. Proc. Natl Acad. Sci. USA 103, 16079–16082 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Heazlewood, B. R. et al. Roaming is the dominant mechanism for molecular products in the acetaldehyde photodissociation. Proc. Natl Acad. Sci. USA 105, 12719–12724 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Hause, M. L., Herath, N., Zhu, R., Lin, M. C. & Suits, A. G. Roaming-mediated isomerization in the photodissociation of nitrobenzene. Nature Chem. 3, 932–937 (2011).

    Article  CAS  Google Scholar 

  8. Harding, L. B. & Klippenstein, S. J. Roaming radical pathways for the decomposition of alkanes. J. Phys. Chem. Lett. 1, 3016–3020 (2010).

    Article  CAS  Google Scholar 

  9. Grubb, M. P. et al. No straight path: roaming in both ground and excited state photolytic channels of NO3 → NO+O2 . Science 335, 1075–1077 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Grubb, M., Warter, M., Suits, A. & North, S. W. Evidence of roaming dynamics and multiple channels for molecular elimination in NO3 photolysis. J. Phys. Chem. Lett. 1, 2455–2458 (2010).

    Article  CAS  Google Scholar 

  11. Xiao, H., Maeda, S. & Morokuma, K. Excited-state roaming dynamics in photolysis of a nitrate radical. J. Phys. Chem. Lett. 2, 934–938 (2011).

    Article  CAS  Google Scholar 

  12. Pal, S. K., Mereshchenko, A. S., Butaeva, E. V., El-Khoury, P. Z. & Tarnovsky, A. N. Global sampling of the photochemical reaction paths of bromoform by ultrafast deep-UV through near-IR transient absorption and ab initio multiconfigurational calculations. J. Chem. Phys. 138, 124501 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Cameron, M. & Bacskay, G. B. Stabilities, excitation energies, and dissociation reactions of CF2Cl2 and CF2Br2: quantum chemical computations of heats of formation of fluorinated methanes, methyls, and carbenes. J. Phys. Chem. A 104, 11212–11219 (2000).

    Article  CAS  Google Scholar 

  14. El-Khoury, P. Z. et al. Characterization of iso-CF2I2 in frequency and ultrafast time domains. J. Chem. Phys. 132, 124501 (2010).

    Article  PubMed  CAS  Google Scholar 

  15. George, L. et al. Spectroscopic and computational studies of matrix-isolated iso-CHBr3: structure, properties, and photochemistry of iso-bromoform. J. Chem. Phys. 135, 124503 (2011).

    Article  PubMed  CAS  Google Scholar 

  16. Kalume, A., George, L. & Reid, S. A. Isomerization as a key path to molecular products in the gas-phase decomposition of halons. J. Phys. Chem. Lett. 1, 3090–3095 (2010).

    Article  CAS  Google Scholar 

  17. Granovsky, A. A. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J. Chem. Phys. 134, 214113 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Pulay, P. A Perspective on the CASPT2 method. Int. J. Quant. Comp. 111, 3273–3364 (2011).

    Article  CAS  Google Scholar 

  19. Serrano-Andrés, L., Merchán, M. & Lindh, R. Computation of conical intersections by using perturbation techniques. J. Chem. Phys. 122, 104107 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Koch, H. & Jørgensen, P. Coupled cluster response functions. J. Chem. Phys. 93, 3333–3344 (1990).

    Article  CAS  Google Scholar 

  21. Briggs, A. G. & Simmons, R. E. Photochemical reactions of some boron trihalides. Naturwissenschaften 67, 402–402 (1980).

    Article  CAS  Google Scholar 

  22. Briggs, A. G. The flash photolysis of phosphorus tribromide and carbon oxysulphide. Spectrochim. Acta A 37, 457–458 (1981).

    Article  Google Scholar 

  23. Bramwell, M. J., Jaeger, S. E. & Whitehead, J. C. The 193 nm photolysis of phosphorus trichloride and phosphorus tribromide. Chem. Phys. Lett. 196, 547–551 (1992).

    Article  CAS  Google Scholar 

  24. Bramwell, M. J., Hughes, C., Jaeger, S. E. & Whitehead, J. C. The 248 nm photolysis of phosphorus trichloride and phosphorus tribromide. Chem. Phys. 183, 127–134 (1994).

    Article  CAS  Google Scholar 

  25. Latifzadeh, L. & Balasubramanian, K. Electronic states of PBr2 and PBr2+. Chem. Phys. Lett. 258, 393–399 (1996).

    Article  CAS  Google Scholar 

  26. Miller, J. H. & Andrews, L. Matrix photoionization and radiolysis of boron trihalides. Infrared and ultraviolet spectra of BC13+ and BBr3+ and infrared spectra of BC12 and BBr2 . J. Am. Chem. Soc. 102, 4900–4906 (1980).

    Article  CAS  Google Scholar 

  27. Moroz, A. & Sweany, L. Photolysis of argon matrices containing tribromoboron and dihydrogen: synthesis of hydroborones via dibromoboron. Inorg. Chem. 31, 5236–5242 (1992).

    Article  CAS  Google Scholar 

  28. Jan-Khan, M. & Samuel, R. Absorption spectra and photodissociation of some inorganic molecules. Proc. Phys. Soc. 48, 626–641 (1936).

    Article  CAS  Google Scholar 

  29. Kennedy, T., Sinclair, R. S. & Sinclair, T. J. The U.V. spectrum and photolysis of phosphorus halides in hydrocarbon solvents. II Phosphorus tribromide and phosphorus pentabromide in cyclohexane. J. Inorg. Nucl. Chem. 33, 2369–2376 (1971).

    Article  CAS  Google Scholar 

  30. Alfassi, Z. B., Huie, R. E., Mittal, J. P., Neta, P. & Shoute, L. C. T. Charge-transfer complexes of bromine atoms with haloalkanes and alkanes. J. Phys. Chem. 97, 9120–9123 (1993).

    Article  CAS  Google Scholar 

  31. Harris, A. L., Berg, M. & Harris, C. B. Studies of chemical reactivity in the condensed phase. I. The dynamics of iodine photodissociation and recombination on a picosecond time scale and comparison to theories for chemical reactions in solution. J. Chem. Phys. 84, 788–806 (1986).

    Article  CAS  Google Scholar 

  32. Kliner, D. A. V., Alfano, J. C. & Barbara, P. F. Photodissociation and vibrational relaxation of I2 in ethanol. J. Chem. Phys. 98, 5375–5389 (1993).

    Article  CAS  Google Scholar 

  33. Dieter Bingemann, D., King, A. M. & Crim, F. F. Transient electronic absorption of vibrationally excited CH2I2: watching energy flow in solution. J. Chem. Phys. 113, 5018–5025 (2000).

    Article  Google Scholar 

  34. Schwartz, B. J., King, J. C., Zhang, J. Z. & Harris, C. B. Direct femtosecond measurements of single collision dominated geminate recombination times of small molecules in liquids. Chem. Phys. Lett. 203, 503–508 (1993).

    Article  CAS  Google Scholar 

  35. Benjamin, I. Photodissociation of ICN in liquid chloroform: molecular dynamics of ground and excited state recombination, cage escape, and hydrogen abstraction reaction. J. Chem. Phys. 103, 2459–2471 (1995).

    Article  CAS  Google Scholar 

  36. Moscun, A. C. & Bradforth, S. E. Photodissociation of ICN in polar solvents: evidence for long lived rotational excitation in room temperature liquids. J. Chem. Phys. 119, 4500–4515 (2003).

    Article  CAS  Google Scholar 

  37. Roos, B. O. The complete active space self-consistent field method and its applications in electronic structure calculations. Adv. Chem. Phys. 69, 399–445 (1987).

    CAS  Google Scholar 

  38. Clark, R. J. H. & Rippon, D. M. The vapor phase Raman spectra, Raman band contour analyses, Coriolis constants, force constants, and values for thermodynamic functions of the trihalides of group V. J. Mol. Spectrosc. 52, 58–71 (1974).

    Article  CAS  Google Scholar 

  39. Anderson, A. & Lettress, L. M. Raman spectra of molecular crystals at high pressures: VIII – boron tribromide. J. Raman Spectrosc. 34, 684–687 (2003).

    Article  CAS  Google Scholar 

  40. Purvis, G. D. III & Bartlett, R. J. A full coupled-cluster singles and doubles model—the inclusion of disconnected triples. J. Chem. Phys. 76, 1910–1918 (1982).

    Article  CAS  Google Scholar 

  41. Elles, C. G. & Crim, F. F. Connecting chemical dynamics in gases and liquids. Annu. Rev. Phys. Chem. 57, 273–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Oliver, T. A. A., Zhang, Y., Ashfold, M. N. R. & Bradforth, S. E. Linking photochemistry in the gas and solution phases: S–H bond fission in p-methylthiophenol following UV excitation. Faraday Disc. 150, 439–458 (2011).

    Article  CAS  Google Scholar 

  43. Fleming, G. R. Chemical Applications of Ultrafast Spectroscopy 126 (Oxford Univ. Press, 1986).

    Google Scholar 

  44. Kovalenko, S. A., Dobryakov, A. L., Ruthmann, J. & Ernsting, N. P. Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing. Phys. Rev. A 59, 2369–2382 (1999).

    Article  CAS  Google Scholar 

  45. Varga, Z., Kolonits, M. & Hargittai, M. Comprehensive study of the structure of aluminium trihalides from electron diffraction and computation. Struct. Chem. 23, 879–893 (2012).

    Article  CAS  Google Scholar 

  46. Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CAREER CHE-0847707 and CHE-0923360). The authors acknowledge an allocation of computer time from the Ohio Supercomputer Center (PCS0204-7) and the Extreme Science and Engineering Discovery Environment (XSEDE, CHE130073). The authors thank R. M. Wilson and P.Z. El-Khoury for discussions. This work would not have been possible without discussions with M. Olivucci, as well as his guidance through the semiclassical trajectory calculations.

Author information

Authors and Affiliations

Authors

Contributions

A.S.M. conceived and designed the experiments, and carried them out together with E.V.B. and A.N.T. E.V.B. and V.A.B. designed and performed the high-level quantum chemical simulations. A.E. analysed the semiclassical trajectories of boron and phosphorus tribromides. A.N.T. analysed the data and supervised the project. The first three authors contributed equally to this work, and all authors contributed to writing sections of the paper.

Corresponding author

Correspondence to Alexander N. Tarnovsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8326 kb)

Supplementary information

Supplementary Movie 1 (AVI 600 kb)

Supplementary information

Supplementary Movie 2 (AVI 470 kb)

Supplementary information

Supplementary Movie 3 (AVI 505 kb)

Supplementary information

Supplementary data 1. The xyz coordinates of the BBr3 gas-phase CASPT2 semiclassical trajectory. (TXT 24 kb)

Supplementary information

Supplementary data 2. The xyz coordinates of the CHBr3 gas-phase CASPT2 semiclassical trajectory. (TXT 21 kb)

Supplementary information

Supplementary data 3. The xyz coordinates of the PBr3 gas-phase CASPT2 semiclassical trajectory. (TXT 24 kb)

Supplementary information

Supplementary data 4. The xyz-file describing the trajectory of bromoform in the acetonitrile solvent cage: CASSCF QM/MM molecular dynamics simulation of CHBr3 in a rigid CH3CN cavity. (TXT 32421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mereshchenko, A., Butaeva, E., Borin, V. et al. Roaming-mediated ultrafast isomerization of geminal tri-bromides in the gas and liquid phases. Nature Chem 7, 562–568 (2015). https://doi.org/10.1038/nchem.2278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nchem.2278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing