Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global profiling of lysine reactivity and ligandability in the human proteome

Abstract

Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein–protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteome-wide quantification of lysine reactivity.
Figure 2: Global and specific assessments of the functionality of lysine reactivity.
Figure 3: Proteome-wide screening of lysine-reactive fragment electrophiles.
Figure 4: Analysis of fragment–lysine interactions.
Figure 5: Confirmation of site-specific fragment–lysine reactions by MS-based proteomics.
Figure 6: Fragment–lysine reactions inhibit the function of diverse proteins.

Similar content being viewed by others

References

  1. Weiss, W. A., Taylor, S. S. & Shokat, K. M. Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat. Chem. Biol. 3, 739–744 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Makley, L. N. & Gestwicki, J. E. Expanding the number of ‘druggable’ targets: non-enzymes and protein–protein interactions. Chem. Biol. Drug Des. 81, 22–32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bachovchin, D. A. & Cravatt, B. F. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat. Rev. Drug Discov. 11, 52–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Pan, Z. et al. Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. ChemMedChem 2, 58–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neggers, J. E. et al. Identifying drug–target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem. Biol. 22, 107–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patricelli, M. P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Akcay, G. et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat. Chem. Biol. 12, 931–936 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell. Biol. 15, 536–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, K. & Dent, S. Y. Histone modifying enzymes and cancer: going beyond histones. J. Cell. Biochem. 96, 1137–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Mattiroli, F. & Sixma, T. K. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Nat. Struct. Mol. Biol. 21, 308–316 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Wymann, M. P. et al. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol. Cell. Biol. 16, 1722–1733 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi, S., Connelly, S., Reixach, N., Wilson, I. A. & Kelly, J. W. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nat. Chem. Biol. 6, 133–139 (2009).

    Article  CAS  Google Scholar 

  20. Crawford, L. A. & Weerapana, E. A tyrosine-reactive irreversible inhibitor for glutathione S-transferase Pi (GSTP1). Mol. Biosyst. 12, 1768–1771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shannon, D. A. et al. Investigating the proteome reactivity and selectivity of aryl halides. J. Am. Chem. Soc. 136, 3330–3333 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Hunter, M. & Ludwig, M. The reaction of imidoesters with proteins and related small molecules. J. Am. Chem. Soc. 84, 3491–3504 (1962).

    Article  CAS  Google Scholar 

  23. Bandyopadhyay, A. & Gao, J. Iminoboronate-based peptide cyclization that responds to pH, oxidation, and small molecule modulators. J. Am. Chem. Soc. 138, 2098–2101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, X. et al. Selective depletion of mutant p53 by cancer chemopreventive isothiocyanates and their structure–activity relationships. J. Med. Chem. 54, 809–816 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Y., Kensler, T. W., Cho, C. G., Posner, G. H. & Talalay, P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl Acad. Sci. USA 91, 3147–3150 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Musiol, H. J. & Moroder, L. N,N′-di-tert-butoxycarbonyl-1H-benzotriazole-1-carboxamidine derivatives are highly reactive guanidinylating reagents. Org. Lett. 3, 3859–3861 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kapp, T. G., Fottner, M., Maltsev, O. V. & Kessler, H. Small cause, great impact: modification of the guanidine group in the RGD motif controls integrin subtype selectivity. Angew. Chem. Int. Ed. 55, 1540–1543 (2016).

    Google Scholar 

  28. Grimster, N. P. et al. Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. J. Am. Chem. Soc. 135, 5656–5668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, Q. et al. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc. 139, 680–685 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Asano, S., Patterson, J. T., Gaj, T. & Barbas, C. F. III. Site-selective labeling of a lysine residue in human serum albumin. Angew. Chem. Int. Ed. 53, 11783–11786 (2014).

    Google Scholar 

  31. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tekaia, F., Yeramian, E. & Dujon, B. Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297, 51–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Google Scholar 

  34. Lockett, M. R., Phillips, M. F., Jarecki, J. L., Peelen, D. & Smith, L. M. A tetrafluorophenyl activated ester self-assembled monolayer for the immobilization of amine-modified oligonucleotides. Langmuir 24, 69–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ravindranath, P. A. & Sanner, M. F. AutoSite: an automated approach for pseudo-ligands prediction from ligand-binding sites identification to predicting key ligand atoms. Bioinformatics 32, 3142–3149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Google Scholar 

  37. Marriott, A. S. et al. NUDT2 disruption elevates diadenosine tetraphosphate (Ap4A) and down-regulates immune response and cancer promotion genes. PLoS ONE 11, e0154674 (2016).

    Google Scholar 

  38. Ge, H., Chen, X., Yang, W., Niu, L. & Teng, M. Crystal structure of wild-type and mutant human Ap4A hydrolase. Biochem. Biophys. Res. Commun. 432, 16–21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y. P. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 33, 1304–1320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Inloes, J. M. et al. The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc. Natl Acad. Sci. USA 111, 14924–14929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson-Grady, J. T., Haas, W. & Gygi, S. P. Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Musayev, F. N., Di Salvo, M. L., Ko, T. P., Schirch, V. & Safo, M. K. Structure and properties of recombinant human pyridoxine 5′-phosphate oxidase. Protein Sci. 12, 1455–1463 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang, J. H. et al. Genomic organization, tissue distribution and deletion mutation of human pyridoxine 5'-phosphate oxidase. Eur. J. Biochem. 271, 2452–2461 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Hacker, S. M., Buntz, A., Zumbusch, A. & Marx, A. Direct monitoring of nucleotide turnover in human cell extracts and cells by fluorogenic ATP analogs. ACS Chem. Biol. 10, 2544–2552 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Schöneberg, T., Kloos, M., Brüser, A., Kirchberger, J. & Sträter, N. Structure and allosteric regulation of eukaryotic 6-phosphofructokinases. Biol. Chem. 394, 977–993 (2013).

    Article  PubMed  CAS  Google Scholar 

  46. Yi, W. et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337, 975–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grzenda, A., Lomberk, G., Zhang, J. S. & Urrutia, R. Sin3: master scaffold and transcriptional corepressor. Biochim. Biophys. Acta 1789, 443–450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nascimento, E. M. et al. The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nat. Cell Biol. 13, 1395–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics. 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Kwon, Y. J. et al. Targeted interference of SIN3A-TGIF1 function by SID decoy treatment inhibits Wnt signaling and invasion in triple negative breast cancer cells. Oncotarget http:dx.doi.org/10.18632/oncotarget.11381 (2016).

  51. Melhuish, T. A. & Wotton, D. The Tgif2 gene contains a retained intron within the coding sequence. BMC Mol. Biol. 7, 2 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hurlin, P. J., Queva, C. & Eisenman, R. N. Mnt, a novel max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev. 11, 44–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Rao, G. et al. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1. Oncogene 12, 1165–1172 (1996).

    CAS  PubMed  Google Scholar 

  54. Andre, I., Linse, S. & Mulder, F. A. Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy: application to apo calmodulin. J. Am. Chem. Soc. 129, 15805–15813 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Karlstrom, A. et al. Using antibody catalysis to study the outcome of multiple evolutionary trials of a chemical task. Proc. Natl Acad. Sci. USA 97, 3878–3883 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Evans, M. J., Saghatelian, A., Sorensen, E. J. & Cravatt, B. F. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat. Biotechnol. 23, 1303–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Choi, S., Ong, D. S. & Kelly, J. W. A stilbene that binds selectively to transthyretin in cells and remains dark until it undergoes a chemoselective reaction to create a bright blue fluorescent conjugate. J. Am. Chem. Soc. 132, 16043–16051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roberts, A. M. et al. Chemoproteomic screening of covalent ligands reveals UBA5 as a novel pancreatic cancer target. ACS Chem. Biol. 12, 899–904 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, Y. et al. Chemoproteomic strategy to quantitatively monitor transnitrosation uncovers functionally relevant S-nitrosation sites on cathepsin D and HADH2. Cell Chem. Biol. 23, 727–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, C., Weerapana, E., Blewett, M. M. & Cravatt, B. F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ward, C. C., Kleinman, J. I. & Nomura, D. K. NHS-esters as versatile reactivity-based probes for mapping proteome-wide ligandable hotspots. ACS Chem. Biol. 12, 1478–1483 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blewett, M. M. et al. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci. Signal. 9, rs10 (2016).

    Google Scholar 

  63. Ford, B., Bateman, L. A., Gutierrez-Palominos, L., Park, R. & Nomura, D. K. Mapping proteome-wide targets of glyphosate in mice. Cell Chem. Biol. 24, 133–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Sahu, S. C. et al. Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor. J. Mol. Biol. 375, 1444–1456 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (CA087660, CA132630 (to B.F.C.), GM108208 (to K.M.B.) and GM069832 (to S.F.)) and the Deutsche Forschungsgemeinschaft (to S.M.H.). The authors thank M. Dix and M. Radu Suciu for providing assistance with proteomics data collection and analysis, respectively. The authors acknowledge PhosphoSitePlus (www.phosphosite.org) and the Scripps NMR and MS core facilities.

Author information

Authors and Affiliations

Authors

Contributions

S.M.H., K.M.B. and B.F.C. conceived of the project, designed experiments and analysed data. S.M.H. and K.M.B. performed mass spectrometry experiments and data analysis. S.M.H. synthesized compounds, cloned, expressed and purified proteins, and conducted inhibition studies. K.M.B., M.R.L. and B.E.C. wrote software. S.M.H. and K.M.B. compiled and analysed mass spectrometry data. S.F. wrote software and conducted computational analyses. M.R.L. conducted immunoprecipitation studies and data analysis. S.M.H., K.M.B. and B.F.C. wrote the manuscript.

Corresponding authors

Correspondence to Stephan M. Hacker, Keriann M. Backus or Benjamin F. Cravatt.

Ethics declarations

Competing interests

The authors declare competing financial interests. B.F.C. is a founder and advisor to Vividion Therapeutics, a biotechnology company interested in using chemical proteomic methods to develop small-molecule drugs to treat human disease.

Supplementary information

Supplementary information

Supplementary information (PDF 10506 kb)

Supplementary information

Supplementary information (XLSX 1473 kb)

Supplementary information

Supplementary information (XLSX 3024 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacker, S., Backus, K., Lazear, M. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nature Chem 9, 1181–1190 (2017). https://doi.org/10.1038/nchem.2826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nchem.2826

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research